Design principle of anti‐corrosive photocatalyst for large‐scale hydrogen production

IF 5.4 3区 工程技术 Q2 ENERGY & FUELS
Spandana Gonuguntla, Bhavya Jaksani, Aparna Jamma, Chandra Shobha Vennapoosa, Debabrata Chatterjee, Ujjwal Pal
{"title":"Design principle of anti‐corrosive photocatalyst for large‐scale hydrogen production","authors":"Spandana Gonuguntla, Bhavya Jaksani, Aparna Jamma, Chandra Shobha Vennapoosa, Debabrata Chatterjee, Ujjwal Pal","doi":"10.1002/wene.530","DOIUrl":null,"url":null,"abstract":"With the most advances made so far in terms of photocatalyst design and preparation (inorganic photoredox nanoparticles), researchers of different expertise joined together to address sustainable energy conversion. Despite notable advancements in creating exceptionally active photocatalysts, the practical scalability of these innovations is hindered by issues such as ineffective utilization of solar energy and mass transport, recombination reactions, catalyst instability, and photo corrosion of the catalyst. In this roadmap review, we brief the fundamentals, latest progress, outstanding challenges, and novel design methodology for anticorrosive photocatalysts favorable to large‐scale hydrogen production. To enable the effective scaling of photocatalysis, beyond the inherent activity of photocatalysts, a range of additional factors are considered, with a primary focus on the design of photocatalytic systems. This review underlines the significance of well‐structured photocatalyst design and evaluation for achieving reproducibility and using dependable research methodology for conducting rigorous experiments. The recommendations are directed at reducing the uncertainty surrounding the optimism presented in published research, and we spotlight our recent research advancements. Importantly, the synergistic integration of design principles and research methodologies to enhance the anti‐corrosion properties of photocatalysts may pave the way for a practical technology to utilize solar energy for large‐scale hydrogen production efficiently.This article is categorized under:<jats:list list-type=\"simple\"> <jats:list-item>Sustainable Energy &gt; Solar Energy</jats:list-item> </jats:list>","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":"39 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Energy and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/wene.530","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

With the most advances made so far in terms of photocatalyst design and preparation (inorganic photoredox nanoparticles), researchers of different expertise joined together to address sustainable energy conversion. Despite notable advancements in creating exceptionally active photocatalysts, the practical scalability of these innovations is hindered by issues such as ineffective utilization of solar energy and mass transport, recombination reactions, catalyst instability, and photo corrosion of the catalyst. In this roadmap review, we brief the fundamentals, latest progress, outstanding challenges, and novel design methodology for anticorrosive photocatalysts favorable to large‐scale hydrogen production. To enable the effective scaling of photocatalysis, beyond the inherent activity of photocatalysts, a range of additional factors are considered, with a primary focus on the design of photocatalytic systems. This review underlines the significance of well‐structured photocatalyst design and evaluation for achieving reproducibility and using dependable research methodology for conducting rigorous experiments. The recommendations are directed at reducing the uncertainty surrounding the optimism presented in published research, and we spotlight our recent research advancements. Importantly, the synergistic integration of design principles and research methodologies to enhance the anti‐corrosion properties of photocatalysts may pave the way for a practical technology to utilize solar energy for large‐scale hydrogen production efficiently.This article is categorized under: Sustainable Energy > Solar Energy
用于大规模制氢的抗腐蚀光催化剂的设计原理
迄今为止,光催化剂的设计和制备(无机光氧化纳米粒子)取得了最大进展,不同专业领域的研究人员携手合作,共同解决可持续能源转换问题。尽管在制造异常活跃的光催化剂方面取得了显著进展,但这些创新成果的实际可扩展性却受到了一些问题的阻碍,如太阳能和质量传输的无效利用、重组反应、催化剂的不稳定性以及催化剂的光腐蚀等。在本路线图综述中,我们将简要介绍有利于大规模制氢的防腐光催化剂的基本原理、最新进展、突出挑战和新型设计方法。为了实现光催化的有效扩展,除了光催化剂的固有活性外,我们还考虑了一系列其他因素,主要重点是光催化系统的设计。本综述强调了结构合理的光催化剂设计和评估对于实现可重复性和使用可靠的研究方法进行严格实验的重要性。我们的建议旨在减少已发表研究中的不确定性,并重点介绍了我们最近的研究进展。重要的是,通过设计原理和研究方法的协同整合来增强光催化剂的抗腐蚀性能,可能会为利用太阳能高效大规模制氢的实用技术铺平道路:可持续能源 > 太阳能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
3.30%
发文量
42
期刊介绍: Wiley Interdisciplinary Reviews: Energy and Environmentis a new type of review journal covering all aspects of energy technology, security and environmental impact. Energy is one of the most critical resources for the welfare and prosperity of society. It also causes adverse environmental and societal effects, notably climate change which is the severest global problem in the modern age. Finding satisfactory solutions to the challenges ahead will need a linking of energy technology innovations, security, energy poverty, and environmental and climate impacts. The broad scope of energy issues demands collaboration between different disciplines of science and technology, and strong interaction between engineering, physical and life scientists, economists, sociologists and policy-makers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信