Enhancing damage prediction in bulk metal forming through machine learning-assisted parameter identification

IF 2.2 3区 工程技术 Q2 MECHANICS
Jan Gerlach, Robin Schulte, Alexander Schowtjak, Till Clausmeyer, Richard Ostwald, A. Erman Tekkaya, Andreas Menzel
{"title":"Enhancing damage prediction in bulk metal forming through machine learning-assisted parameter identification","authors":"Jan Gerlach,&nbsp;Robin Schulte,&nbsp;Alexander Schowtjak,&nbsp;Till Clausmeyer,&nbsp;Richard Ostwald,&nbsp;A. Erman Tekkaya,&nbsp;Andreas Menzel","doi":"10.1007/s00419-024-02634-1","DOIUrl":null,"url":null,"abstract":"<div><p>The open-source parameter identification tool ADAPT (A diversely applicable parameter identification Tool) is integrated with a machine learning-based approach for start value prediction in order to calibrate a Gurson–Tvergaard–Needleman (GTN) and a Lemaitre damage model. As representative example case-hardened steel 16MnCrS5 is elaborated. An artificial neural network (ANN) is initially trained by using load–displacement curves derived from simulations of a boundary value problem—instead of using data generated for homogeneous states of deformation at material point or one-element level—with varying material parameter combinations. The ANN is then employed so as to predict sets of material parameters that already provide close solutions to the experiment. These predicted parameter sets serve as starting values for a subsequent multi-objective parameter identification by using ADAPT. ADAPT allows for the consideration of input data from multiple scales, including integral data such as load–displacement curves, full-field data such as displacement and strain fields, and high-resolution experimental void data at the micro-scale. The influence of each data set on prediction quality is analyzed. Using various types of input data introduces additional information, enhancing prediction accuracy. The validation is carried out with respect to experimental void measurements of forward rod extruded parts. The results demonstrate, by incorporating void measurements in the optimization process, that it is possible to improve the quantitative prediction of ductile damage in the sense of void area fractions by factor 28 in forward rod extrusion.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"94 8","pages":"2217 - 2242"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00419-024-02634-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02634-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The open-source parameter identification tool ADAPT (A diversely applicable parameter identification Tool) is integrated with a machine learning-based approach for start value prediction in order to calibrate a Gurson–Tvergaard–Needleman (GTN) and a Lemaitre damage model. As representative example case-hardened steel 16MnCrS5 is elaborated. An artificial neural network (ANN) is initially trained by using load–displacement curves derived from simulations of a boundary value problem—instead of using data generated for homogeneous states of deformation at material point or one-element level—with varying material parameter combinations. The ANN is then employed so as to predict sets of material parameters that already provide close solutions to the experiment. These predicted parameter sets serve as starting values for a subsequent multi-objective parameter identification by using ADAPT. ADAPT allows for the consideration of input data from multiple scales, including integral data such as load–displacement curves, full-field data such as displacement and strain fields, and high-resolution experimental void data at the micro-scale. The influence of each data set on prediction quality is analyzed. Using various types of input data introduces additional information, enhancing prediction accuracy. The validation is carried out with respect to experimental void measurements of forward rod extruded parts. The results demonstrate, by incorporating void measurements in the optimization process, that it is possible to improve the quantitative prediction of ductile damage in the sense of void area fractions by factor 28 in forward rod extrusion.

Abstract Image

通过机器学习辅助参数识别,加强大块金属成型过程中的损伤预测
将开源参数识别工具 ADAPT(多种适用参数识别工具)与基于机器学习的起始值预测方法相结合,以校准 Gurson-Tvergaard-Needleman (GTN) 和 Lemaitre 损伤模型。以 16MnCrS5 淬火钢为例进行了阐述。人工神经网络(ANN)最初是通过模拟边界值问题得出的载荷-位移曲线来进行训练的,而不是使用在材料点或单元素水平上的均匀变形状态下生成的数据,同时使用不同的材料参数组合。然后利用 ANN 来预测与实验结果接近的材料参数集。这些预测参数集可作为随后使用 ADAPT 进行多目标参数识别的起始值。ADAPT 允许考虑多种尺度的输入数据,包括整体数据(如载荷-位移曲线)、全场数据(如位移和应变场)以及微观尺度的高分辨率实验空隙数据。分析了每种数据集对预测质量的影响。使用各种类型的输入数据可引入额外信息,提高预测精度。对正杆挤压部件的实验空隙测量进行了验证。结果表明,通过在优化过程中加入空隙测量,可以将正向挤压棒中空隙面积分数意义上的韧性损伤定量预测提高 28 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
10.70%
发文量
234
审稿时长
4-8 weeks
期刊介绍: Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信