A multi-horizon fully coupled thermo-mechanical peridynamics

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Changyi Yang , Fan Zhu , Jidong Zhao
{"title":"A multi-horizon fully coupled thermo-mechanical peridynamics","authors":"Changyi Yang ,&nbsp;Fan Zhu ,&nbsp;Jidong Zhao","doi":"10.1016/j.jmps.2024.105758","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a fully coupled thermo-mechanical peridynamic model for simulating interactive thermo-mechanical material responses and thermally induced fracturing of solids. A temperature-dependent constitutive model and a deformation-dependent heat conduction model are derived for state-based peridynamic formulation. The dispersion relation and truncation error of the state-based peridynamic heat equation are analyzed for the first time. It is found that as non-locality becoming more pronounced, the dissipative rate of heat is reduced, and the truncation error becomes larger. A small horizon can effectively mitigate oscillation while reducing the error in the temperature field. For coupled thermo-mechanical modeling, a novel multi-horizon scheme is introduced where the thermal field is solved with a different horizon than that of the mechanical field. The multi-horizon scheme allows for the implementation of a distinct degree of non-locality for different physical field. Comparing with the constant-horizon scheme, we demonstrate through numerical examples that the multi-horizon scheme offers smoother and more accurate solutions and serves a promising option for peridynamics-based multi-physics simulations.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624002242","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a fully coupled thermo-mechanical peridynamic model for simulating interactive thermo-mechanical material responses and thermally induced fracturing of solids. A temperature-dependent constitutive model and a deformation-dependent heat conduction model are derived for state-based peridynamic formulation. The dispersion relation and truncation error of the state-based peridynamic heat equation are analyzed for the first time. It is found that as non-locality becoming more pronounced, the dissipative rate of heat is reduced, and the truncation error becomes larger. A small horizon can effectively mitigate oscillation while reducing the error in the temperature field. For coupled thermo-mechanical modeling, a novel multi-horizon scheme is introduced where the thermal field is solved with a different horizon than that of the mechanical field. The multi-horizon scheme allows for the implementation of a distinct degree of non-locality for different physical field. Comparing with the constant-horizon scheme, we demonstrate through numerical examples that the multi-horizon scheme offers smoother and more accurate solutions and serves a promising option for peridynamics-based multi-physics simulations.

多地平线全耦合热机械周流体力学
本文提出了一种完全耦合的热-机械围动力学模型,用于模拟交互式热-机械材料响应和固体的热诱导断裂。在基于状态的周动力学计算中,推导出了一个与温度相关的构成模型和一个与变形相关的热传导模型。首次分析了基于状态的周动态热方程的分散关系和截断误差。结果发现,随着非局部性的增强,热的耗散率降低,截断误差变大。小的水平线可以有效缓解振荡,同时减少温度场的误差。在热力-机械耦合建模中,引入了一种新颖的多视界方案,即热力场的求解视界与机械场的不同。多视界方案允许对不同的物理场实施不同程度的非局部性。与恒定视界方案相比,我们通过数值示例证明,多视界方案提供了更平滑、更精确的解决方案,是基于周动力学的多物理场模拟的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信