Anmol Verma, Shubhang Srivastava, Shivam Bhardwaj, Ambika Prasad Shah
{"title":"High-performance anti-series diode ring amplifier for switched capacitor circuits","authors":"Anmol Verma, Shubhang Srivastava, Shivam Bhardwaj, Ambika Prasad Shah","doi":"10.1016/j.vlsi.2024.102236","DOIUrl":null,"url":null,"abstract":"<div><p>Ring amplifiers enable efficient amplification with less power consumption. These are characterized by fairly power requirements, and innate rail-to-rail output swing and are robust against PVT variations. In this paper, we are presenting an improved self-biased anti-series diode-based ring amplifier (ASD-RAMP) design, implemented on 45-nm CMOS technology. The design uses two diode-connected PMOS transistors that are connected in an anti-series manner to generate a large resistance because of which a high dead-zone voltage is generated. The ASD-RAMP has a settling time of only 4.05 ns, which is nearly half of the conventional self-biased ring amplifier (CSB-RAMP). In comparison to CSB-RAMP, the proposed ASD-RAMP improves the dead-zone voltage by <span><math><mrow><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo></mrow></math></span> while requiring 6.76% less power. The circuit is durable and suitable for high-performance applications since it exhibits great resilience to PVT variations in addition to the improved dead zone voltage and reduced settling time.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926024001007","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Ring amplifiers enable efficient amplification with less power consumption. These are characterized by fairly power requirements, and innate rail-to-rail output swing and are robust against PVT variations. In this paper, we are presenting an improved self-biased anti-series diode-based ring amplifier (ASD-RAMP) design, implemented on 45-nm CMOS technology. The design uses two diode-connected PMOS transistors that are connected in an anti-series manner to generate a large resistance because of which a high dead-zone voltage is generated. The ASD-RAMP has a settling time of only 4.05 ns, which is nearly half of the conventional self-biased ring amplifier (CSB-RAMP). In comparison to CSB-RAMP, the proposed ASD-RAMP improves the dead-zone voltage by while requiring 6.76% less power. The circuit is durable and suitable for high-performance applications since it exhibits great resilience to PVT variations in addition to the improved dead zone voltage and reduced settling time.
期刊介绍:
Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics:
Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.