Modulation of ketyl radical reactivity to mediate the selective synthesis of coupling and carbonyl compounds

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED
Zhaohui Chen, Jun Deng, Yanmei Zheng, Wenjun Zhang, Lin Dong, Zupeng Chen
{"title":"Modulation of ketyl radical reactivity to mediate the selective synthesis of coupling and carbonyl compounds","authors":"Zhaohui Chen,&nbsp;Jun Deng,&nbsp;Yanmei Zheng,&nbsp;Wenjun Zhang,&nbsp;Lin Dong,&nbsp;Zupeng Chen","doi":"10.1016/S1872-2067(24)60045-8","DOIUrl":null,"url":null,"abstract":"<div><p>The importance of selective synthesis of high-value-added chemicals from renewable resources is paramount but remains a crucial challenge in organic synthesis and chemical reformation. Herein, we report the selective photosynthesis of C–C coupling products and carbonyl compounds from biomass-derived alcohols. The key to ensuring high end-to-end selectivity is the modulation of the reactivity of ketyl radical (*RCHOH) intermediates by employing different metal co-catalysts (Au, Pt, Pd, Ru) supported on Cd<sub>0.6</sub>Zn<sub>0.4</sub>S solid solution (CZS) photocatalysts. In particular, the C–C coupling product, hydrobenzion, and fully oxidized benzaldehyde were obtained from benzyl alcohol with high selectivity (&gt; 98%) over Au-CZS and Ru-CZS, respectively. Combined experimental and theoretical analyses demonstrated that the affinity of *RCHOH for the surface of metals governs their subsequent transformations, in which weak and strong radical adsorption on Au and Ru results in C–C coupling products and carbonyl compounds, respectively.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"61 ","pages":"Pages 135-143"},"PeriodicalIF":15.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600458","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The importance of selective synthesis of high-value-added chemicals from renewable resources is paramount but remains a crucial challenge in organic synthesis and chemical reformation. Herein, we report the selective photosynthesis of C–C coupling products and carbonyl compounds from biomass-derived alcohols. The key to ensuring high end-to-end selectivity is the modulation of the reactivity of ketyl radical (*RCHOH) intermediates by employing different metal co-catalysts (Au, Pt, Pd, Ru) supported on Cd0.6Zn0.4S solid solution (CZS) photocatalysts. In particular, the C–C coupling product, hydrobenzion, and fully oxidized benzaldehyde were obtained from benzyl alcohol with high selectivity (> 98%) over Au-CZS and Ru-CZS, respectively. Combined experimental and theoretical analyses demonstrated that the affinity of *RCHOH for the surface of metals governs their subsequent transformations, in which weak and strong radical adsorption on Au and Ru results in C–C coupling products and carbonyl compounds, respectively.

调节酮基的反应性以介导偶联物和羰基化合物的选择性合成
从可再生资源中选择性合成高附加值化学品至关重要,但这仍是有机合成和化学转化领域的一项关键挑战。在此,我们报告了从生物质衍生醇类中选择性光合合成 C-C 偶联产物和羰基化合物的过程。确保高端对端选择性的关键在于采用不同的金属助催化剂(金、铂、钯、钌),在 Cd0.6Zn0.4S 固溶体(CZS)光催化剂上支撑,调节酮基自由基(*RCHOH)中间体的反应活性。其中,在 Au-CZS 和 Ru-CZS 上分别以高选择性(> 98%)从苯甲醇中获得了 C-C 偶联产物氢苯并翁和完全氧化的苯甲醛。综合实验和理论分析表明,*RCHOH 对金属表面的亲和力决定了它们的后续转化,其中弱自由基和强自由基在 Au 和 Ru 上的吸附分别导致 C-C 偶联产物和羰基化合物的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信