Conceptual frameworks for the integration of genetic and social epidemiology in complex diseases

Diane Xue , Anjum Hajat , Alison E. Fohner
{"title":"Conceptual frameworks for the integration of genetic and social epidemiology in complex diseases","authors":"Diane Xue ,&nbsp;Anjum Hajat ,&nbsp;Alison E. Fohner","doi":"10.1016/j.gloepi.2024.100156","DOIUrl":null,"url":null,"abstract":"<div><p>Uncovering the root causes of complex diseases requires complex approaches, yet many studies continue to isolate the effects of genetic and social determinants of disease. Epidemiologic efforts that under-utilize genetic epidemiology methods and findings may lead to incomplete understanding of disease. Meanwhile, genetic epidemiology studies are often conducted without consideration of social and environmental context, limiting the public health impact of genomic discoveries. This divide endures despite shared goals and increases in interdisciplinary data due to a lack of shared theoretical frameworks and differing language. Here, we demonstrate that bridging epidemiological divides does not require entirely new ways of thinking. Existing social epidemiology frameworks including Ecosocial theory and Fundamental Cause Theory, can both be extended to incorporate principles from genetic epidemiology. We show that genetic epidemiology can strengthen, rather than detract from, efforts to understand the impact of social determinants of health. In addition to presenting theoretical synergies, we offer practical examples of how genetics can improve the public health impact of epidemiology studies across the field. Ultimately, we aim to provide a guiding framework for trainees and established epidemiologists to think about diseases and complex systems and foster more fruitful collaboration between genetic and traditional epidemiological disciplines.</p></div>","PeriodicalId":36311,"journal":{"name":"Global Epidemiology","volume":"8 ","pages":"Article 100156"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590113324000221/pdfft?md5=67c278baa8f2f590eea2db907fbebf6d&pid=1-s2.0-S2590113324000221-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590113324000221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Uncovering the root causes of complex diseases requires complex approaches, yet many studies continue to isolate the effects of genetic and social determinants of disease. Epidemiologic efforts that under-utilize genetic epidemiology methods and findings may lead to incomplete understanding of disease. Meanwhile, genetic epidemiology studies are often conducted without consideration of social and environmental context, limiting the public health impact of genomic discoveries. This divide endures despite shared goals and increases in interdisciplinary data due to a lack of shared theoretical frameworks and differing language. Here, we demonstrate that bridging epidemiological divides does not require entirely new ways of thinking. Existing social epidemiology frameworks including Ecosocial theory and Fundamental Cause Theory, can both be extended to incorporate principles from genetic epidemiology. We show that genetic epidemiology can strengthen, rather than detract from, efforts to understand the impact of social determinants of health. In addition to presenting theoretical synergies, we offer practical examples of how genetics can improve the public health impact of epidemiology studies across the field. Ultimately, we aim to provide a guiding framework for trainees and established epidemiologists to think about diseases and complex systems and foster more fruitful collaboration between genetic and traditional epidemiological disciplines.

复杂疾病遗传流行病学与社会流行病学相结合的概念框架
揭示复杂疾病的根源需要复杂的方法,但许多研究仍将疾病的遗传和社会决定因素的影响隔离开来。未充分利用遗传流行病学方法和研究结果的流行病学工作可能导致对疾病的认识不全面。同时,遗传流行病学研究往往不考虑社会和环境背景,限制了基因组发现对公共卫生的影响。由于缺乏共同的理论框架和不同的语言,尽管有共同的目标,跨学科数据也在增加,但这种鸿沟依然存在。在此,我们证明弥合流行病学的鸿沟并不需要全新的思维方式。现有的社会流行病学框架,包括生态社会理论和根本原因理论,都可以扩展到遗传流行病学的原则中。我们表明,遗传流行病学可以加强而不是削弱了解健康的社会决定因素的影响的努力。除了介绍理论上的协同作用外,我们还提供了一些实际案例,说明遗传学如何能提高整个流行病学研究对公共健康的影响。最终,我们希望为受训者和资深流行病学家提供一个思考疾病和复杂系统的指导框架,并促进遗传学和传统流行病学学科之间更富有成效的合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Epidemiology
Global Epidemiology Medicine-Infectious Diseases
CiteScore
5.00
自引率
0.00%
发文量
22
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信