Strong convergence of the tamed Euler-Maruyama method for stochastic singular initial value problems with non-globally Lipschitz continuous coefficients

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yan Li, Nan Deng, Wanrong Cao
{"title":"Strong convergence of the tamed Euler-Maruyama method for stochastic singular initial value problems with non-globally Lipschitz continuous coefficients","authors":"Yan Li,&nbsp;Nan Deng,&nbsp;Wanrong Cao","doi":"10.1016/j.apnum.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>In our previous works <span>[1]</span> and <span>[2]</span>, we delved into numerical methods for solving stochastic singular initial value problems (SSIVPs) that involve coefficients satisfying the global Lipschitz condition. The paper addresses the limitations of our previous work by introducing an explicit method, called the tamed Euler-Maruyama method, for numerically solving SSIVPs with non-globally Lipschitz continuous coefficients, which is both easy-to-implement and exceptionally efficient. We prove the existence and uniqueness theorem and the boundedness of the moments of the solution to SSIVPs under the non-globally Lipschitz condition. Moreover, we provide a sharp analysis of the strong convergence of the proposed method, along with the uniform boundedness of numerical solutions. We also apply our results to the stochastic singular Ginzburg-Landau system and provide numerical simulations to illustrate our theoretical findings.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In our previous works [1] and [2], we delved into numerical methods for solving stochastic singular initial value problems (SSIVPs) that involve coefficients satisfying the global Lipschitz condition. The paper addresses the limitations of our previous work by introducing an explicit method, called the tamed Euler-Maruyama method, for numerically solving SSIVPs with non-globally Lipschitz continuous coefficients, which is both easy-to-implement and exceptionally efficient. We prove the existence and uniqueness theorem and the boundedness of the moments of the solution to SSIVPs under the non-globally Lipschitz condition. Moreover, we provide a sharp analysis of the strong convergence of the proposed method, along with the uniform boundedness of numerical solutions. We also apply our results to the stochastic singular Ginzburg-Landau system and provide numerical simulations to illustrate our theoretical findings.

具有非全局利普齐兹连续系数的随机奇异初值问题的驯服欧拉-丸山方法的强收敛性
在我们以前的著作[1]和[2]中,我们深入研究了解决随机奇异初值问题(SSIVPs)的数值方法,这些问题涉及满足全局 Lipschitz 条件的系数。本文针对我们之前工作的局限性,介绍了一种用于数值求解非全局 Lipschitz 连续系数的 SSIVP 的显式方法(称为驯服的 Euler-Maruyama 方法),这种方法既易于实现,又异常高效。我们证明了非全局 Lipschitz 条件下 SSIVP 解的存在性和唯一性定理以及矩的有界性。此外,我们还对所提方法的强收敛性以及数值解的均匀有界性进行了尖锐分析。我们还将结果应用于随机奇异金兹堡-朗道系统,并提供数值模拟来说明我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信