Unveiling the multiple effects of MOF-derived TiO2 on Ti-Fe2O3 photoanodes for efficient and stable photoelectrochemical water oxidation

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED
Kaikai Ba , Yuʼnan Liu , Kai Zhang , Ping Wang , Yanhong Lin , Dejun Wang , Ziheng Li , Tengfeng Xie
{"title":"Unveiling the multiple effects of MOF-derived TiO2 on Ti-Fe2O3 photoanodes for efficient and stable photoelectrochemical water oxidation","authors":"Kaikai Ba ,&nbsp;Yuʼnan Liu ,&nbsp;Kai Zhang ,&nbsp;Ping Wang ,&nbsp;Yanhong Lin ,&nbsp;Dejun Wang ,&nbsp;Ziheng Li ,&nbsp;Tengfeng Xie","doi":"10.1016/S1872-2067(24)60005-7","DOIUrl":null,"url":null,"abstract":"<div><p>α-Fe<sub>2</sub>O<sub>3</sub> is a promising photoanode that is limited by its high surface charge recombination and slow water oxidation kinetics. In this study, we synthesized a TiO<sub>2</sub> layer on Ti-Fe<sub>2</sub>O<sub>3</sub> by annealing Ti-MOFs, followed by ZIF-67 as a co-catalyst, to fabricate a ZIF-67/TiO<sub>2</sub>/Ti-Fe<sub>2</sub>O<sub>3</sub> photoanode for photoelectrochemical (PEC) water splitting. The systematic experimental and theoretical results revealed that the improvement in performance was due to multiple effects of the MOF-derived TiO<sub>2</sub>. This molecule not only passivates the acceptor surface states of Ti-Fe<sub>2</sub>O<sub>3</sub>, thereby reducing the number of surface recombination centers, but also acts as an electron barrier to promote charge separation in the Ti-Fe<sub>2</sub>O<sub>3</sub> bulk. Moreover, MOF-derived TiO<sub>2</sub> can dramatically reduce the energy barrier for the OER of Ti-Fe<sub>2</sub>O<sub>3</sub>, thus promoting the conversion of the intermediate *OH into *O. The synergistic improvement in the bulk and surface properties effectively enhanced the water oxidation performance of Ti-Fe<sub>2</sub>O<sub>3</sub>. The ZIF-67/TiO<sub>2</sub>/Ti-Fe<sub>2</sub>O<sub>3</sub> photoanode exhibits a photocurrent density of up to 4.04 mA cm<sup>−2</sup> at 1.23 V <em>vs</em>. RHE, which is 9.4 times as that of pure Ti-Fe<sub>2</sub>O<sub>3</sub>, and has long-term stability. Our work provides a feasible strategy for constructing efficient organic-inorganic hybrid photoelectrodes.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"61 ","pages":"Pages 179-191"},"PeriodicalIF":15.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600057","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

α-Fe2O3 is a promising photoanode that is limited by its high surface charge recombination and slow water oxidation kinetics. In this study, we synthesized a TiO2 layer on Ti-Fe2O3 by annealing Ti-MOFs, followed by ZIF-67 as a co-catalyst, to fabricate a ZIF-67/TiO2/Ti-Fe2O3 photoanode for photoelectrochemical (PEC) water splitting. The systematic experimental and theoretical results revealed that the improvement in performance was due to multiple effects of the MOF-derived TiO2. This molecule not only passivates the acceptor surface states of Ti-Fe2O3, thereby reducing the number of surface recombination centers, but also acts as an electron barrier to promote charge separation in the Ti-Fe2O3 bulk. Moreover, MOF-derived TiO2 can dramatically reduce the energy barrier for the OER of Ti-Fe2O3, thus promoting the conversion of the intermediate *OH into *O. The synergistic improvement in the bulk and surface properties effectively enhanced the water oxidation performance of Ti-Fe2O3. The ZIF-67/TiO2/Ti-Fe2O3 photoanode exhibits a photocurrent density of up to 4.04 mA cm−2 at 1.23 V vs. RHE, which is 9.4 times as that of pure Ti-Fe2O3, and has long-term stability. Our work provides a feasible strategy for constructing efficient organic-inorganic hybrid photoelectrodes.

揭示 MOF 衍生 TiO2 对 Ti-Fe2O3 光阳极的多重影响,实现高效稳定的光电化学水氧化作用
α-Fe2O3是一种很有前途的光阳极,但其表面电荷重组率高、水氧化动力学缓慢,这限制了它的发展。在本研究中,我们通过退火 Ti-MOFs 在 Ti-Fe2O3 上合成了 TiO2 层,然后以 ZIF-67 作为助催化剂,制备了 ZIF-67/TiO2/Ti-Fe2O3 光阳极,用于光电化学(PEC)分水。系统的实验和理论结果表明,性能的提高是由于 MOF 衍生 TiO2 的多重效应。这种分子不仅钝化了 Ti-Fe2O3 的受体表面态,从而减少了表面重组中心的数量,而且还起到了电子屏障的作用,促进了 Ti-Fe2O3 体中的电荷分离。此外,MOF 衍生的 TiO2 还能显著降低 Ti-Fe2O3 的 OER 能垒,从而促进中间体 *OH 向 *O 的转化。块体和表面性质的协同改善有效提高了 Ti-Fe2O3 的水氧化性能。ZIF-67/TiO2/Ti-Fe2O3 光阳极在 1.23 V 对 RHE 时的光电流密度高达 4.04 mA cm-2,是纯 Ti-Fe2O3 的 9.4 倍,并且具有长期稳定性。我们的工作为构建高效的有机-无机杂化光电极提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信