Kirill K. Bakanov , Sofia N. Ardabevskaia , Kseniya A. Bezlepkina , Kseniia S. Klokova , Artur E. Krupnin , Alexander I. Buzin , Dmitriy A. Khanin , Sergei A. Kostrov , Artem V. Bakirov , Fedor V. Drozdov , Sergey N. Chvalun , Aziz M. Muzafarov , Jun Zou , Elena Yu. Kramarenko , Sergey A. Milenin
{"title":"PDMS-based copolymers with polyurea blocks and 1,2,3-triazole blocks obtained by CuAAC polymerization for 3D printing","authors":"Kirill K. Bakanov , Sofia N. Ardabevskaia , Kseniya A. Bezlepkina , Kseniia S. Klokova , Artur E. Krupnin , Alexander I. Buzin , Dmitriy A. Khanin , Sergei A. Kostrov , Artem V. Bakirov , Fedor V. Drozdov , Sergey N. Chvalun , Aziz M. Muzafarov , Jun Zou , Elena Yu. Kramarenko , Sergey A. Milenin","doi":"10.1016/j.reactfunctpolym.2024.106005","DOIUrl":null,"url":null,"abstract":"<div><p>Polydimethylsiloxanes with improved mechanical properties that can be processed by 3D printing are in high demand for scientific and practical applications. In our article, we proposed the synthesis of new PDMS copolymers with urethane and triazole fragments using the CuAAC reaction mechanism, as well as 3D printing with the obtained copolymers. Two types of copolymers, with molecular weights of 3000 and 6000 Da of PDMS block length, were prepared and characterized by GPC, IR spectroscopy, TGA, DSC, TMA, SAXS, and rheological measurements to determine their physicochemical properties. The synthesized copolymers were found to be suitable for processing by extrusion 3D printing. This demonstrated the ability to 3D print macroscale models of varying shapes and complexity. The resulting materials retained their printed shape over time.</p></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"202 ","pages":"Article 106005"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824001809","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Polydimethylsiloxanes with improved mechanical properties that can be processed by 3D printing are in high demand for scientific and practical applications. In our article, we proposed the synthesis of new PDMS copolymers with urethane and triazole fragments using the CuAAC reaction mechanism, as well as 3D printing with the obtained copolymers. Two types of copolymers, with molecular weights of 3000 and 6000 Da of PDMS block length, were prepared and characterized by GPC, IR spectroscopy, TGA, DSC, TMA, SAXS, and rheological measurements to determine their physicochemical properties. The synthesized copolymers were found to be suitable for processing by extrusion 3D printing. This demonstrated the ability to 3D print macroscale models of varying shapes and complexity. The resulting materials retained their printed shape over time.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.