Low-cost clamp for the measurement of vegetation spectral signatures

IF 2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Camilo Acevedo-Correa , Manuel Goez , Maria C. Torres-Madronero , Tatiana Rondon
{"title":"Low-cost clamp for the measurement of vegetation spectral signatures","authors":"Camilo Acevedo-Correa ,&nbsp;Manuel Goez ,&nbsp;Maria C. Torres-Madronero ,&nbsp;Tatiana Rondon","doi":"10.1016/j.ohx.2024.e00557","DOIUrl":null,"url":null,"abstract":"<div><p>Spectral signatures allow the characterization of a surface from the reflected or emitted energy along the electromagnetic spectrum. This type of measurement has several potential applications in precision agriculture. However, capturing the spectral signatures of plants requires specialized instruments, either in the field or the laboratory. The cost of these instruments is high, so their incorporation in crop monitoring tasks is not massive, given the low investment in agricultural technology. This paper presents a low-cost clamp to capture spectral leaf signatures in the laboratory and the field. The clamp can be 3D printed using PLA (polylactic acid); it allows the connection of 2 optical fibers: one for a spectrometer and one for a light source. It is designed for ease of use and holds a leave firmly without causing damage, allowing data to be collected with less disturbance. The article compares signatures captured directly using a fiber and the proposed clamp; noise reduction across the spectrum is achieved with the clamp.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"19 ","pages":"Article e00557"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000518/pdfft?md5=bdde53191ce36567b57b60780d139a6b&pid=1-s2.0-S2468067224000518-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Spectral signatures allow the characterization of a surface from the reflected or emitted energy along the electromagnetic spectrum. This type of measurement has several potential applications in precision agriculture. However, capturing the spectral signatures of plants requires specialized instruments, either in the field or the laboratory. The cost of these instruments is high, so their incorporation in crop monitoring tasks is not massive, given the low investment in agricultural technology. This paper presents a low-cost clamp to capture spectral leaf signatures in the laboratory and the field. The clamp can be 3D printed using PLA (polylactic acid); it allows the connection of 2 optical fibers: one for a spectrometer and one for a light source. It is designed for ease of use and holds a leave firmly without causing damage, allowing data to be collected with less disturbance. The article compares signatures captured directly using a fiber and the proposed clamp; noise reduction across the spectrum is achieved with the clamp.

Abstract Image

测量植被光谱特征的低成本夹具
光谱特征可以通过电磁波谱的反射或发射能量来描述表面特征。这种测量方法在精准农业中具有多种潜在应用。然而,捕捉植物的光谱特征需要在田间或实验室使用专门的仪器。这些仪器的成本很高,因此在农业技术投资较低的情况下,将其纳入作物监测任务的规模并不大。本文介绍了一种用于在实验室和田间捕捉叶片光谱特征的低成本夹具。该夹具可使用聚乳酸(PLA)3D 打印而成;可连接 2 根光纤:一根用于光谱仪,一根用于光源。它的设计易于使用,可牢牢夹住假条而不会造成损坏,从而可以在较少干扰的情况下采集数据。文章比较了直接使用光纤和拟议的夹具捕获的信号;夹具实现了整个光谱的降噪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HardwareX
HardwareX Engineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍: HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信