More classes of permutation pentanomials over finite fields with characteristic two

IF 1.2 3区 数学 Q1 MATHEMATICS
Tongliang Zhang , Lijing Zheng , Hanbing Zhao
{"title":"More classes of permutation pentanomials over finite fields with characteristic two","authors":"Tongliang Zhang ,&nbsp;Lijing Zheng ,&nbsp;Hanbing Zhao","doi":"10.1016/j.ffa.2024.102468","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>. In this paper, we investigate permutation pentanomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> of the form <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>t</mi></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>t</mi></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>t</mi></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>t</mi></mrow></msup></math></span> with <span><math><mrow><mi>gcd</mi></mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>+</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi><mo>−</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi><mo>−</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi><mo>−</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi><mo>−</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msup><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. We transform the problem concerning permutation property of <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> into demonstrating that the corresponding fractional polynomial permutes the unit circle <em>U</em> of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> with order <span><math><mi>q</mi><mo>+</mo><mn>1</mn></math></span> via a well-known lemma, and then into showing that there are no certain solution in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> for some high-degree equations over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> associated with the fractional polynomial. According to numerical data, we have found all such permutations with <span><math><mn>4</mn><mo>≤</mo><mi>t</mi><mo>&lt;</mo><mn>100</mn><mo>,</mo><mn>1</mn><mo>≤</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><mi>t</mi></math></span>, <span><math><mi>i</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>4</mn><mo>]</mo></math></span>. Several permutation polynomials are also investigated from the fractional polynomials permuting the unit circle <em>U</em> found in this paper.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001072","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let q=2m. In this paper, we investigate permutation pentanomials over Fq2 of the form f(x)=xt+xr1(q1)+t+xr2(q1)+t+xr3(q1)+t+xr4(q1)+t with gcd(xr4+xr3+xr2+xr1+1,xt+xtr1+xtr2+xtr3+xtr4)=1. We transform the problem concerning permutation property of f(x) into demonstrating that the corresponding fractional polynomial permutes the unit circle U of Fq2 with order q+1 via a well-known lemma, and then into showing that there are no certain solution in Fq for some high-degree equations over Fq associated with the fractional polynomial. According to numerical data, we have found all such permutations with 4t<100,1rit, i[1,4]. Several permutation polynomials are also investigated from the fractional polynomials permuting the unit circle U found in this paper.

特性为 2 的有限域上的更多类置换五元数
设 q=2m。在本文中,我们研究 Fq2 上形式为 f(x)=xt+xr1(q-1)+t+xr2(q-1)+t+xr3(q-1)+t+xr4(q-1)+t 的置换五次方,gcd(xr4+xr3+xr2+xr1+1,xt+xt-r1+xt-r2+xt-r3+xt-r4)=1。我们将 f(x) 的置换性质问题转化为通过一个著名的 Lemma 证明相应的分数多项式以 q+1 的阶置换 Fq2 的单位圆 U,然后转化为证明与分数多项式相关的 Fq 上的一些高阶方程在 Fq 中没有一定的解。根据数值数据,我们找到了 4≤t<100,1≤ri≤t, i∈[1,4] 的所有此类置换。本文还从单位圆 U 的分数多项式中研究了几种置换多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信