Yu Liu , Muhammad Rizal Razman , Sharifah Zarina Syed Zakaria , Khai Ern Lee , Sajid Ullah Khan , Abdullah Albanyan
{"title":"Personalized context-aware systems for sustainable agriculture development using ubiquitous devices and adaptive learning","authors":"Yu Liu , Muhammad Rizal Razman , Sharifah Zarina Syed Zakaria , Khai Ern Lee , Sajid Ullah Khan , Abdullah Albanyan","doi":"10.1016/j.chb.2024.108375","DOIUrl":null,"url":null,"abstract":"<div><p>Advanced technologies offer a promising answer, especially integrating personalized context-aware systems through ubiquitous devices and adaptive learning. This paper explores the ability of these technologies to transform agricultural practices, improving performance and sustainability. This study aims to analyze the effect of integrating context-aware structures in agriculture using ubiquitous gadgets and adaptive learning fashions. It specializes in assessing the upgrades in helpful resource control, crop yield, and environmental sustainability and explores the farming community's economic, social, and academic advantages. Utilizing a combined-methods approach, the studies combine intensive literature with empirical statistics series, including discipline experiments, surveys, and interviews with key agricultural stakeholders. It examines contemporary farming practices, the capabilities of rising technology, and the conditions for enforcing robust context-aware systems in farming. Implementing context-aware systems improves agricultural practices by optimizing water and chemical usage, enhancing soil health, and increasing crop yields. Ubiquitous devices and adaptive learning models facilitate specific, real-time selection-making, leading to extra sustainable and green farming operations. Feedback from the rural community similarly underscores the positive effect of technology on improving accessibility to facts and collaborative learning. The study demonstrated that integrating personalized, context-aware systems with IoT and adaptive learning significantly improves agricultural efficiency and sustainability, evidenced by enhanced resource management and increased crop yields. This study contributes to the discourse on leveraging advanced technology to reap agricultural sustainability and units the groundwork for destiny research and coverage development in era-better farming.</p></div>","PeriodicalId":48471,"journal":{"name":"Computers in Human Behavior","volume":"160 ","pages":"Article 108375"},"PeriodicalIF":9.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747563224002437/pdfft?md5=3938eb49abdabd7432292e2978af113c&pid=1-s2.0-S0747563224002437-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Human Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747563224002437","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced technologies offer a promising answer, especially integrating personalized context-aware systems through ubiquitous devices and adaptive learning. This paper explores the ability of these technologies to transform agricultural practices, improving performance and sustainability. This study aims to analyze the effect of integrating context-aware structures in agriculture using ubiquitous gadgets and adaptive learning fashions. It specializes in assessing the upgrades in helpful resource control, crop yield, and environmental sustainability and explores the farming community's economic, social, and academic advantages. Utilizing a combined-methods approach, the studies combine intensive literature with empirical statistics series, including discipline experiments, surveys, and interviews with key agricultural stakeholders. It examines contemporary farming practices, the capabilities of rising technology, and the conditions for enforcing robust context-aware systems in farming. Implementing context-aware systems improves agricultural practices by optimizing water and chemical usage, enhancing soil health, and increasing crop yields. Ubiquitous devices and adaptive learning models facilitate specific, real-time selection-making, leading to extra sustainable and green farming operations. Feedback from the rural community similarly underscores the positive effect of technology on improving accessibility to facts and collaborative learning. The study demonstrated that integrating personalized, context-aware systems with IoT and adaptive learning significantly improves agricultural efficiency and sustainability, evidenced by enhanced resource management and increased crop yields. This study contributes to the discourse on leveraging advanced technology to reap agricultural sustainability and units the groundwork for destiny research and coverage development in era-better farming.
期刊介绍:
Computers in Human Behavior is a scholarly journal that explores the psychological aspects of computer use. It covers original theoretical works, research reports, literature reviews, and software and book reviews. The journal examines both the use of computers in psychology, psychiatry, and related fields, and the psychological impact of computer use on individuals, groups, and society. Articles discuss topics such as professional practice, training, research, human development, learning, cognition, personality, and social interactions. It focuses on human interactions with computers, considering the computer as a medium through which human behaviors are shaped and expressed. Professionals interested in the psychological aspects of computer use will find this journal valuable, even with limited knowledge of computers.