{"title":"Degradable cellulose acetate-based waterborne polyurethane sand-fixing agents for sand control in desert regions","authors":"Wanjia Yang , Benli Liu","doi":"10.1016/j.polymertesting.2024.108512","DOIUrl":null,"url":null,"abstract":"<div><p>In hot and arid desert regions, degradable chemical sand-fixing agents are efficient in dealing with problems caused by wind-blown sand movement without damaging the environment. This study aimed to develop a set of biodegradable sand-stabilizing substances, cellulose acetate (CA)-based waterborne polyurethane (WPU), utilizing CA as a partial hydroxyl provision through an acetone-based technique. The findings demonstrate that all the CA/WPU sand-fixing agents had unique, evenly spherical particles and were fully capable of degradation. The CA/WPU-2 sand-fixing agent contained 20 % polypropylene glycol (PPG) of CA. It showed strong viscosity, thermal stability, and water resistance. Furthermore, seed germination will be hindered by the CA/WPU-2 sand-fixing agent due to its superior sand-fixing capability compared to pure WPU. Consequently, it is suitable for application in arid regions where plant survival is difficult. CA/WPU-6 contained 120%PPG of CA. it showed outstanding O<sub>2</sub> permeability and hydrophilicity due to its significant use of cellulose acetate. In addition, it demonstrated higher wind-blown sand resistance compared to popular commercial sand-fixation production. Furthermore, it sustained a consolidation strength lower than the highest penetration capability for herbaceous plant seeds. Therefore, CA/WPU-6 is a suitable option for establishing vegetation in dry situations. The results of this study address the demand for sustainable production and cost reduction, offering significant potential for industrial applications.</p></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142941824001892/pdfft?md5=bda4e1c1881097c76bcb58ce2fc027cd&pid=1-s2.0-S0142941824001892-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824001892","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
In hot and arid desert regions, degradable chemical sand-fixing agents are efficient in dealing with problems caused by wind-blown sand movement without damaging the environment. This study aimed to develop a set of biodegradable sand-stabilizing substances, cellulose acetate (CA)-based waterborne polyurethane (WPU), utilizing CA as a partial hydroxyl provision through an acetone-based technique. The findings demonstrate that all the CA/WPU sand-fixing agents had unique, evenly spherical particles and were fully capable of degradation. The CA/WPU-2 sand-fixing agent contained 20 % polypropylene glycol (PPG) of CA. It showed strong viscosity, thermal stability, and water resistance. Furthermore, seed germination will be hindered by the CA/WPU-2 sand-fixing agent due to its superior sand-fixing capability compared to pure WPU. Consequently, it is suitable for application in arid regions where plant survival is difficult. CA/WPU-6 contained 120%PPG of CA. it showed outstanding O2 permeability and hydrophilicity due to its significant use of cellulose acetate. In addition, it demonstrated higher wind-blown sand resistance compared to popular commercial sand-fixation production. Furthermore, it sustained a consolidation strength lower than the highest penetration capability for herbaceous plant seeds. Therefore, CA/WPU-6 is a suitable option for establishing vegetation in dry situations. The results of this study address the demand for sustainable production and cost reduction, offering significant potential for industrial applications.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.