Enhanced resistive switching behaviors of organic resistive random access memory devices by adding polyethyleneimine interlayer

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mehr Khalid Rahmani , Sobia Ali Khan , Dae-Myeong Geum , Hyuntak Jeon , Seong Yeon Park , Changhun Yun , Moon Hee Kang
{"title":"Enhanced resistive switching behaviors of organic resistive random access memory devices by adding polyethyleneimine interlayer","authors":"Mehr Khalid Rahmani ,&nbsp;Sobia Ali Khan ,&nbsp;Dae-Myeong Geum ,&nbsp;Hyuntak Jeon ,&nbsp;Seong Yeon Park ,&nbsp;Changhun Yun ,&nbsp;Moon Hee Kang","doi":"10.1016/j.orgel.2024.107089","DOIUrl":null,"url":null,"abstract":"<div><p>Organic nonvolatile memory devices have garnered significant attention as next-generation electrical memory units owing to their potential for low-cost and straightforward fabrication through a solution process. In this study, we successfully fabricated fully solution-processed organic resistive random access memory (RRAM) devices using poly(3-hexylthiophene-2,5-diyl) <u>(P3HT)</u> and [6,6]-phenyl-C61-butyric acid methyl ester <u>(PCBM)</u> as the resistive switching (RS) layer, with poly(3,4-ethylene-dioxythiophene):poly(styrene sulfonate) <u>(PEDOT:PSS)</u> employed as the top electrode. Additionally, to enhance performance further, a polyethyleneimine (PEIE) interlayer was introduced between the bottom electrode and the P3HT:PCBM RS layer. The resulting organic RRAM devices with the PEIE interlayer exhibited bipolar resistive switching, with improved endurance increasing from 50 to 100 cycles, a retention time of 10<sup>3</sup> s, and a low SET voltage of 0.7 V. The organic RRAM devices featuring the PEIE interlayer demonstrated superior RS performance attributed to the higher Schottky barrier at the interface between the bottom electrode and the active switching layer, creating an asymmetric structure. I–V curve fitting confirmed that the potential switching mechanism involved Schottky emission in the high-resistance state and Ohmic conduction in the low-resistance state. Our findings suggest that organic RRAM devices with a PEIE interlayer hold promise for stable nonvolatile memory applications.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"132 ","pages":"Article 107089"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic nonvolatile memory devices have garnered significant attention as next-generation electrical memory units owing to their potential for low-cost and straightforward fabrication through a solution process. In this study, we successfully fabricated fully solution-processed organic resistive random access memory (RRAM) devices using poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as the resistive switching (RS) layer, with poly(3,4-ethylene-dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) employed as the top electrode. Additionally, to enhance performance further, a polyethyleneimine (PEIE) interlayer was introduced between the bottom electrode and the P3HT:PCBM RS layer. The resulting organic RRAM devices with the PEIE interlayer exhibited bipolar resistive switching, with improved endurance increasing from 50 to 100 cycles, a retention time of 103 s, and a low SET voltage of 0.7 V. The organic RRAM devices featuring the PEIE interlayer demonstrated superior RS performance attributed to the higher Schottky barrier at the interface between the bottom electrode and the active switching layer, creating an asymmetric structure. I–V curve fitting confirmed that the potential switching mechanism involved Schottky emission in the high-resistance state and Ohmic conduction in the low-resistance state. Our findings suggest that organic RRAM devices with a PEIE interlayer hold promise for stable nonvolatile memory applications.

Abstract Image

通过添加聚乙烯亚胺中间膜增强有机电阻式随机存取存储器件的电阻开关行为
有机非易失性存储器件作为下一代电存储器件备受关注,因为它们具有通过溶液工艺低成本、直接制造的潜力。在这项研究中,我们使用聚(3-己基噻吩-2,5-二基)(P3HT)和[6,6]-苯基-C61-丁酸甲酯(PCBM)作为电阻开关(RS)层,并使用聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)作为顶电极,成功地制造出了完全溶液加工的有机电阻式随机存取存储器(RRAM)器件。此外,为了进一步提高性能,在底电极和 P3HT:PCBM RS 层之间引入了聚乙烯亚胺(PEIE)中间层。由此产生的带有 PEIE 中间层的有机 RRAM 器件具有双极电阻开关功能,耐久性从 50 个周期提高到 100 个周期,保持时间为 103 秒,SET 电压低至 0.7 V。采用 PEIE 中间膜的有机 RRAM 器件具有优异的 RS 性能,这归功于底部电极和有源开关层之间的界面具有较高的肖特基势垒,从而形成了一种非对称结构。I-V 曲线拟合证实,潜在的开关机制涉及高电阻状态下的肖特基发射和低电阻状态下的欧姆传导。我们的研究结果表明,带有 PEIE 中间层的有机 RRAM 器件有望用于稳定的非易失性存储器应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信