Zhang Weipeng , Zhao Bo , Gao Shengbo , Zhu Yue , Zhou Liming , Niu Kang , Qiu Zhaomei , Jin Xin
{"title":"Design and experiment of an intelligent testing bench for air-suction seed metering devices for small vegetable seeds","authors":"Zhang Weipeng , Zhao Bo , Gao Shengbo , Zhu Yue , Zhou Liming , Niu Kang , Qiu Zhaomei , Jin Xin","doi":"10.1016/j.biosystemseng.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>In order to realise the real-time monitoring of seeding quality of small vegetable seeds, and solve the problem of inconvenience caused by the small particle sizes of vegetable seeds, an intelligent testing bench for air-suction seed metering device for small vegetable seeds with a particle diameter of 0.5–3 mm was designed, and a complementary quality monitoring and controlling system was developed. The photoelectric sensing technology and image recognition technology were used together in the system. Photoelectric sensing technology was used for real-time monitoring of seed counting, while the image recognition technology can dynamically monitor the missed seeding, repeated seeding and the falling trajectory of seed deposition in real time. The system was installed on the air-suction intelligent testing bench to test the monitoring accuracy of the monitoring system. The experimental results demonstrated that the monitoring accuracy of drilling quality monitoring system was over 97%, the monitoring accuracy of miss seeding was over 95%, and the monitoring accuracy of repeated seeding was over 93%. Furthermore, the monitoring system was less affected by the seed particle size, shape, and plant spacing, etc., and the system was stable, which effectively realised the real-time monitoring of the operation of air-suction metering device.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024001569","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In order to realise the real-time monitoring of seeding quality of small vegetable seeds, and solve the problem of inconvenience caused by the small particle sizes of vegetable seeds, an intelligent testing bench for air-suction seed metering device for small vegetable seeds with a particle diameter of 0.5–3 mm was designed, and a complementary quality monitoring and controlling system was developed. The photoelectric sensing technology and image recognition technology were used together in the system. Photoelectric sensing technology was used for real-time monitoring of seed counting, while the image recognition technology can dynamically monitor the missed seeding, repeated seeding and the falling trajectory of seed deposition in real time. The system was installed on the air-suction intelligent testing bench to test the monitoring accuracy of the monitoring system. The experimental results demonstrated that the monitoring accuracy of drilling quality monitoring system was over 97%, the monitoring accuracy of miss seeding was over 95%, and the monitoring accuracy of repeated seeding was over 93%. Furthermore, the monitoring system was less affected by the seed particle size, shape, and plant spacing, etc., and the system was stable, which effectively realised the real-time monitoring of the operation of air-suction metering device.
期刊介绍:
Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.