Geomagnetically induced currents (GICs) during strong geomagnetic activity (storms, substorms, and magnetic pulsations) on 23–24 April 2023

IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Irina Despirak , Pavel Setsko , Andris Lubchich , Rajkumar Hajra , Yaroslav Sakharov , Gurbax Lakhina , Vasiliy Selivanov , Bruce Tsatnam Tsurutani
{"title":"Geomagnetically induced currents (GICs) during strong geomagnetic activity (storms, substorms, and magnetic pulsations) on 23–24 April 2023","authors":"Irina Despirak ,&nbsp;Pavel Setsko ,&nbsp;Andris Lubchich ,&nbsp;Rajkumar Hajra ,&nbsp;Yaroslav Sakharov ,&nbsp;Gurbax Lakhina ,&nbsp;Vasiliy Selivanov ,&nbsp;Bruce Tsatnam Tsurutani","doi":"10.1016/j.jastp.2024.106293","DOIUrl":null,"url":null,"abstract":"<div><p>We analyzed intense geomagnetically induced currents (GICs) recorded during a complex space weather event observed on 23–24 April 2023. Two geomagnetic storms characterized by SYM/H intensities of −179 nT and −233 nT were caused by southward interplanetary magnetic field (IMF) Bz component of −25 nT in the sheath fields, and −33 nT in the magnetic cloud (MC) fields, respectively. GIC observations were divided into two local time sectors: nighttime (1700–2400 UT on 23 April) GICs observed during the interplanetary sheath magnetic storm, and morning sector (0200–0700 UT on 24 April) GICs observed during the MC magnetic storm. By using the direct measurements of GICs on several substations of Karelian-Kola power line (located in the north-west portion of Russia) and gas pipeline station near Mäntsälä (south of Finland), we managed to trace the meridional profile of GIC increases at different latitudes. It was shown that the night sector GIC intensifications (∼18–42 A) occurred in accordance with poleward expansion of the westward electrojet during a substorm. On the other hand, the intense morning sector GICs (∼12–46 A) were caused by Ps 6 magnetic pulsations. In addition, a strong local morning GIC (∼44 A) was associated with a local substorm-like disturbance caused by a high-density solar wind structure, possibly a coronal loop portion of an interplanetary coronal mass ejection.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001214","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We analyzed intense geomagnetically induced currents (GICs) recorded during a complex space weather event observed on 23–24 April 2023. Two geomagnetic storms characterized by SYM/H intensities of −179 nT and −233 nT were caused by southward interplanetary magnetic field (IMF) Bz component of −25 nT in the sheath fields, and −33 nT in the magnetic cloud (MC) fields, respectively. GIC observations were divided into two local time sectors: nighttime (1700–2400 UT on 23 April) GICs observed during the interplanetary sheath magnetic storm, and morning sector (0200–0700 UT on 24 April) GICs observed during the MC magnetic storm. By using the direct measurements of GICs on several substations of Karelian-Kola power line (located in the north-west portion of Russia) and gas pipeline station near Mäntsälä (south of Finland), we managed to trace the meridional profile of GIC increases at different latitudes. It was shown that the night sector GIC intensifications (∼18–42 A) occurred in accordance with poleward expansion of the westward electrojet during a substorm. On the other hand, the intense morning sector GICs (∼12–46 A) were caused by Ps 6 magnetic pulsations. In addition, a strong local morning GIC (∼44 A) was associated with a local substorm-like disturbance caused by a high-density solar wind structure, possibly a coronal loop portion of an interplanetary coronal mass ejection.

2023 年 4 月 23-24 日强地磁活动(风暴、亚暴和磁脉冲)期间的地磁感应电流 (GIC)
我们分析了在 2023 年 4 月 23-24 日观测到的复杂空间天气事件期间记录到的强烈地磁感应电流(GIC)。两次地磁暴的特征是 SYM/H 强度分别为 -179 nT 和 -233 nT,分别由鞘场中 -25 nT 和磁云(MC)场中 -33 nT 的南向行星际磁场(IMF)Bz 分量引起。GIC 观测结果分为两个当地时间段:行星际鞘磁暴期间观测到的夜间(格林尼治标准时间 4 月 23 日 17 时至 24 时)GIC,以及 MC 磁暴期间观测到的早晨(格林尼治标准时间 4 月 24 日 2 时至 7 时)GIC。通过对卡累利阿-科拉(Karelian-Kola)电力线(位于俄罗斯西北部)的几个变电站和梅恩察莱(Mäntsälä,芬兰南部)附近的天然气管道站的 GIC 直接测量,我们成功地追踪了不同纬度的 GIC 增加的子午线剖面。结果表明,夜间扇区的 GIC 增强(∼18-42 A)是与亚暴期间向西的电射流向极扩展相一致的。另一方面,早晨扇区的强GIC(∼12-46 A)是由Ps 6磁脉冲引起的。此外,一个强烈的局部早晨GIC(∼44 A)与高密度太阳风结构引起的局部亚暴样扰动有关,可能是行星际日冕物质抛射的日冕环部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Atmospheric and Solar-Terrestrial Physics
Journal of Atmospheric and Solar-Terrestrial Physics 地学-地球化学与地球物理
CiteScore
4.10
自引率
5.30%
发文量
95
审稿时长
6 months
期刊介绍: The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them. The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions. Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信