Synergistic enhancement of cadmium immobilization and soil fertility through biochar and artificial humic acid-assisted microbial-induced calcium carbonate precipitation.

Journal of hazardous materials Pub Date : 2024-09-05 Epub Date: 2024-07-07 DOI:10.1016/j.jhazmat.2024.135140
Yu Li, Meiling Zhang, Xiaobin Wang, Shuang Ai, Xianghui Meng, Zhuqing Liu, Fan Yang, Kui Cheng
{"title":"Synergistic enhancement of cadmium immobilization and soil fertility through biochar and artificial humic acid-assisted microbial-induced calcium carbonate precipitation.","authors":"Yu Li, Meiling Zhang, Xiaobin Wang, Shuang Ai, Xianghui Meng, Zhuqing Liu, Fan Yang, Kui Cheng","doi":"10.1016/j.jhazmat.2024.135140","DOIUrl":null,"url":null,"abstract":"<p><p>Microbially induced carbonate precipitation (MICP) is emerging as a favorable alternative to traditional soil remediation techniques for heavy metals, primarily due to its environmental friendliness. However, a significant challenge in using MICP for farmland is not only to immobilize heavy metals but also to concurrently enhance soil fertility. This study explores the innovative combination of artificial humic acid (A-HA), biochar (BC), and Sporosarcina pasteurii (S. pasteurii) to mitigate the bioavailability of cadmium (Cd) in contaminated agricultural soils through MICP. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses revealed that the integration of BC and A-HA significantly enhances Cd immobilization efficiency by co-precipitating with CaCO<sub>3</sub>. Moreover, this treatment also improved soil fertility and ecological functions, as evidenced by increases in total nitrogen (TN, 9.0-78.2 %), alkaline hydrolysis nitrogen (AN, 259.7-635.5 %), soil organic matter (SOM, 18.1-27.9 %), total organic carbon (TOC, 43.8-48.8 %), dissolved organic carbon (DOC, 36.0-88.4 %) and available potassium (AK, 176.2-193.3 %). Additionally, the relative abundance of dominant phyla such as Proteobacteria and Firmicutes significantly increased with the introduction of BC and A-HA in MICP. Consequently, the integration of BC and A-HA with MICP offers a promising solution for remediating Cd-contaminated agricultural soil and synergistically enhancing soil fertility.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"476 ","pages":"135140"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microbially induced carbonate precipitation (MICP) is emerging as a favorable alternative to traditional soil remediation techniques for heavy metals, primarily due to its environmental friendliness. However, a significant challenge in using MICP for farmland is not only to immobilize heavy metals but also to concurrently enhance soil fertility. This study explores the innovative combination of artificial humic acid (A-HA), biochar (BC), and Sporosarcina pasteurii (S. pasteurii) to mitigate the bioavailability of cadmium (Cd) in contaminated agricultural soils through MICP. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses revealed that the integration of BC and A-HA significantly enhances Cd immobilization efficiency by co-precipitating with CaCO3. Moreover, this treatment also improved soil fertility and ecological functions, as evidenced by increases in total nitrogen (TN, 9.0-78.2 %), alkaline hydrolysis nitrogen (AN, 259.7-635.5 %), soil organic matter (SOM, 18.1-27.9 %), total organic carbon (TOC, 43.8-48.8 %), dissolved organic carbon (DOC, 36.0-88.4 %) and available potassium (AK, 176.2-193.3 %). Additionally, the relative abundance of dominant phyla such as Proteobacteria and Firmicutes significantly increased with the introduction of BC and A-HA in MICP. Consequently, the integration of BC and A-HA with MICP offers a promising solution for remediating Cd-contaminated agricultural soil and synergistically enhancing soil fertility.

通过生物炭和人工腐植酸辅助微生物诱导碳酸钙沉淀协同提高镉固定化和土壤肥力。
微生物诱导碳酸盐沉淀法(MICP)正在成为传统土壤重金属修复技术的一种有利替代方法,这主要是由于它对环境友好。然而,在农田中使用微生物诱导碳酸盐沉淀的一个重大挑战是,不仅要固定重金属,还要同时提高土壤肥力。本研究探索了人工腐植酸(A-HA)、生物炭(BC)和巴氏芽孢杆菌(S. pasteurii)的创新组合,以通过 MICP 降低受污染农田土壤中镉的生物利用率。X 射线衍射(XRD)和扫描电子显微镜(SEM)分析表明,BC 和 A-HA 的结合通过与 CaCO3 共沉淀,显著提高了镉的固定效率。此外,这种处理方法还提高了土壤肥力和生态功能,表现在全氮(TN,9.0-78.2%)、碱解氮(AN,259.7-635.5%)、土壤有机质(SOM,18.1-27.9%)、全有机碳(TOC,43.8-48.8%)、溶解有机碳(DOC,36.0-88.4%)和可利用钾(AK,176.2-193.3%)的增加。此外,随着 BC 和 A-HA 在 MICP 中的引入,优势菌门(如变形菌门和真菌门)的相对丰度显著增加。因此,BC 和 A-HA 与 MICP 的结合为修复受镉污染的农业土壤和协同提高土壤肥力提供了一种前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信