Fedelis Mutiso, John L. Pearce, Sara E. Benjamin-Neelon, Noel T. Mueller, Hong Li, Brian Neelon
{"title":"A Marginalized Zero-Inflated Negative Binomial Model for Spatial Data: Modeling COVID-19 Deaths in Georgia","authors":"Fedelis Mutiso, John L. Pearce, Sara E. Benjamin-Neelon, Noel T. Mueller, Hong Li, Brian Neelon","doi":"10.1002/bimj.202300182","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Spatial count data with an abundance of zeros arise commonly in disease mapping studies. Typically, these data are analyzed using zero-inflated models, which comprise a mixture of a point mass at zero and an ordinary count distribution, such as the Poisson or negative binomial. However, due to their mixture representation, conventional zero-inflated models are challenging to explain in practice because the parameter estimates have conditional latent-class interpretations. As an alternative, several authors have proposed marginalized zero-inflated models that simultaneously model the excess zeros and the marginal mean, leading to a parameterization that more closely aligns with ordinary count models. Motivated by a study examining predictors of COVID-19 death rates, we develop a spatiotemporal marginalized zero-inflated negative binomial model that directly models the marginal mean, thus extending marginalized zero-inflated models to the spatial setting. To capture the spatiotemporal heterogeneity in the data, we introduce region-level covariates, smooth temporal effects, and spatially correlated random effects to model both the excess zeros and the marginal mean. For estimation, we adopt a Bayesian approach that combines full-conditional Gibbs sampling and Metropolis–Hastings steps. We investigate features of the model and use the model to identify key predictors of COVID-19 deaths in the US state of Georgia during the 2021 calendar year.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300182","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial count data with an abundance of zeros arise commonly in disease mapping studies. Typically, these data are analyzed using zero-inflated models, which comprise a mixture of a point mass at zero and an ordinary count distribution, such as the Poisson or negative binomial. However, due to their mixture representation, conventional zero-inflated models are challenging to explain in practice because the parameter estimates have conditional latent-class interpretations. As an alternative, several authors have proposed marginalized zero-inflated models that simultaneously model the excess zeros and the marginal mean, leading to a parameterization that more closely aligns with ordinary count models. Motivated by a study examining predictors of COVID-19 death rates, we develop a spatiotemporal marginalized zero-inflated negative binomial model that directly models the marginal mean, thus extending marginalized zero-inflated models to the spatial setting. To capture the spatiotemporal heterogeneity in the data, we introduce region-level covariates, smooth temporal effects, and spatially correlated random effects to model both the excess zeros and the marginal mean. For estimation, we adopt a Bayesian approach that combines full-conditional Gibbs sampling and Metropolis–Hastings steps. We investigate features of the model and use the model to identify key predictors of COVID-19 deaths in the US state of Georgia during the 2021 calendar year.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.