Identification of neutralizing antibodies against monkeypox virus using high-throughput sequencing of A35+H3L+B cells from patients with convalescent monkeypox
Ruitian Hou , Qiwei Jiang , Meiling Cheng , Jun Dai , Huiqin Yang , Jiao Yuan , Xiao Li , Xiaoping Tang , Haisheng Yu
{"title":"Identification of neutralizing antibodies against monkeypox virus using high-throughput sequencing of A35+H3L+B cells from patients with convalescent monkeypox","authors":"Ruitian Hou , Qiwei Jiang , Meiling Cheng , Jun Dai , Huiqin Yang , Jiao Yuan , Xiao Li , Xiaoping Tang , Haisheng Yu","doi":"10.1016/j.virusres.2024.199437","DOIUrl":null,"url":null,"abstract":"<div><p>The global monkeypox virus (MPXV) outbreak in 2022 emphasizes the urgent need for effective and accessible new-generation vaccines and neutralizing antibodies. Herein, we identified MPXV-neutralizing antibodies using high-throughput single-cell RNA and V(D)J sequencing of antigen-sorted B cells from patients with convalescent monkeypox. IgG1-expressing B cells were obtained from 34 paired heavy- and light-chain B cell receptor sequences. Subsequently, three potent neutralizing antibodies, MV127, MV128, and MV129, were identified and reacted with the MPXV A35 protein. Among these, MV129, which has a half-maximal inhibitory concentration of 2.68μg/mL against authentic MPXV, was considered to be the putative candidates for MPXV neutralization in response to monkeypox disease.</p></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168170224001308/pdfft?md5=75506194baa493056f273bdd665aeb08&pid=1-s2.0-S0168170224001308-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168170224001308","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The global monkeypox virus (MPXV) outbreak in 2022 emphasizes the urgent need for effective and accessible new-generation vaccines and neutralizing antibodies. Herein, we identified MPXV-neutralizing antibodies using high-throughput single-cell RNA and V(D)J sequencing of antigen-sorted B cells from patients with convalescent monkeypox. IgG1-expressing B cells were obtained from 34 paired heavy- and light-chain B cell receptor sequences. Subsequently, three potent neutralizing antibodies, MV127, MV128, and MV129, were identified and reacted with the MPXV A35 protein. Among these, MV129, which has a half-maximal inhibitory concentration of 2.68μg/mL against authentic MPXV, was considered to be the putative candidates for MPXV neutralization in response to monkeypox disease.
期刊介绍:
Virus Research provides a means of fast publication for original papers on fundamental research in virology. Contributions on new developments concerning virus structure, replication, pathogenesis and evolution are encouraged. These include reports describing virus morphology, the function and antigenic analysis of virus structural components, virus genome structure and expression, analysis on virus replication processes, virus evolution in connection with antiviral interventions, effects of viruses on their host cells, particularly on the immune system, and the pathogenesis of virus infections, including oncogene activation and transduction.