Joël E. J. Beaumont, Lydie M. O. Barbeau, Jinzhe Ju, Kim G. Savelkouls, Freek G. Bouwman, Marijke I. Zonneveld, Annelies Bronckaers, Kim R. Kampen, Tom G. H. Keulers, Kasper M. A. Rouschop
{"title":"Cancer EV stimulate endothelial glycolysis to fuel protein synthesis via mTOR and AMPKα activation","authors":"Joël E. J. Beaumont, Lydie M. O. Barbeau, Jinzhe Ju, Kim G. Savelkouls, Freek G. Bouwman, Marijke I. Zonneveld, Annelies Bronckaers, Kim R. Kampen, Tom G. H. Keulers, Kasper M. A. Rouschop","doi":"10.1002/jev2.12449","DOIUrl":null,"url":null,"abstract":"<p>Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis. Recently, extracellular vesicles (EV) have emerged as important mediators of intercellular communication in support of cancer progression. Previously, we demonstrated the pro-angiogenic properties of hypoxic cancer cell derived EV. In this study, we investigate how (hypoxic) cancer cell derived EV mediate their effects. We demonstrate that cancer derived EV regulate cellular metabolism and protein synthesis in acceptor cells through increased activation of mTOR and AMPKα. Using metabolic tracer experiments, we demonstrate that EV stimulate glucose uptake in endothelial cells to fuel amino acid synthesis and stimulate amino acid uptake to increase protein synthesis. Despite alterations in cargo, we show that the effect of cancer derived EV on recipient cells is primarily determined by the EV producing cancer cell type rather than its oxygenation status.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 7","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12449","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.12449","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis. Recently, extracellular vesicles (EV) have emerged as important mediators of intercellular communication in support of cancer progression. Previously, we demonstrated the pro-angiogenic properties of hypoxic cancer cell derived EV. In this study, we investigate how (hypoxic) cancer cell derived EV mediate their effects. We demonstrate that cancer derived EV regulate cellular metabolism and protein synthesis in acceptor cells through increased activation of mTOR and AMPKα. Using metabolic tracer experiments, we demonstrate that EV stimulate glucose uptake in endothelial cells to fuel amino acid synthesis and stimulate amino acid uptake to increase protein synthesis. Despite alterations in cargo, we show that the effect of cancer derived EV on recipient cells is primarily determined by the EV producing cancer cell type rather than its oxygenation status.
缺氧是实体瘤的常见特征,它会激活癌细胞的适应机制,诱发抗药性,并对细胞代谢产生深远影响。因此,缺氧是导致癌症进展的重要因素,并与不良预后有关。肿瘤微环境中细胞的代谢改变通过抑制免疫反应和诱导血管生成等方式支持肿瘤生长。最近,细胞外囊泡(EV)已成为支持癌症进展的细胞间通讯的重要媒介。此前,我们证实了缺氧癌细胞衍生的细胞外囊泡具有促进血管生成的特性。在本研究中,我们研究了(缺氧)癌细胞衍生的 EV 如何介导其作用。我们证明,癌细胞衍生 EV 通过增加 mTOR 和 AMPKα 的活化来调节接受体细胞的细胞代谢和蛋白质合成。我们利用代谢示踪实验证明,EV 可刺激内皮细胞摄取葡萄糖以促进氨基酸合成,并刺激氨基酸摄取以增加蛋白质合成。尽管货物发生了变化,但我们发现癌症衍生 EV 对受体细胞的影响主要取决于产生 EV 的癌细胞类型,而不是其氧合状态。
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.