{"title":"Facile construction of copper-doped metal organic framework as a novel visible light-responsive photocatalyst for contaminant degradation.","authors":"Yingjie Li, Wenyan Bi, Haoyu Yang, Yingli Yue, Sixu Liu, Guangshun Hou","doi":"10.1080/09593330.2024.2376290","DOIUrl":null,"url":null,"abstract":"<p><p><b>ABSTRACT</b>Metal-organic frameworks (MOFs) with photocatalytic activity have garnered significant attentions in environmental remediation. Herein, copper-doped zeolitic imidazolate framework-7 (Cu-doped ZIF-7) was synthesized rapidly and easily using a microwave-assisted technique. Various analytical and spectroscopic methods were employed to access the framework, morphology, light absorption, photo-electrochemical and photocatalytic performance of the synthesized materials. Compared to ZIF-7, Cu/ZIF-7 (molar ratio of Cu<sup>2+</sup> to Zn<sup>2+</sup> is 1:1) demonstrates superior visible light absorption ability, narrower band gap, enhanced charge separation capability, and reduced electron-hole recombination performance. Under visible light irradiation, Cu/ZIF-7 serves as a Fenton-like catalyst and demonstrates exceptional activity for contaminant degradation, while virgin ZIF-7 remains inactive. With the addition of 9.8 mmol H<sub>2</sub>O<sub>2</sub> and exposure to visible light for 30 min, 10 mg of Cu/ZIF-7 can completely decompose RhB solution (10 mg/L, 50 mL). The synergistic effect of the Cu/ZIF-7/H<sub>2</sub>O<sub>2</sub>/visible light system is attributed to visible light photocatalysis and Fenton-like reactions. Cu/ZIF-7 demonstrates excellent catalytic performance stability, with only a slight decrease in degradation efficiency from an initial 97.0% to 95.4% over four cycles. Additionally, spin-trapping ESR measurements and active species trapping experiments revealed that h<sup>+</sup> and ·OH occupied a significant position for Rhodamine B (RhB) degradation. Degradation intermediate products of Rhodamine B have been identified using UPLC-MS, and the degradation pathways have been proposed and discussed. This work offers a facile and efficient technique for developing MOF-based visible light photocatalysts for water purification.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1099-1111"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2376290","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTMetal-organic frameworks (MOFs) with photocatalytic activity have garnered significant attentions in environmental remediation. Herein, copper-doped zeolitic imidazolate framework-7 (Cu-doped ZIF-7) was synthesized rapidly and easily using a microwave-assisted technique. Various analytical and spectroscopic methods were employed to access the framework, morphology, light absorption, photo-electrochemical and photocatalytic performance of the synthesized materials. Compared to ZIF-7, Cu/ZIF-7 (molar ratio of Cu2+ to Zn2+ is 1:1) demonstrates superior visible light absorption ability, narrower band gap, enhanced charge separation capability, and reduced electron-hole recombination performance. Under visible light irradiation, Cu/ZIF-7 serves as a Fenton-like catalyst and demonstrates exceptional activity for contaminant degradation, while virgin ZIF-7 remains inactive. With the addition of 9.8 mmol H2O2 and exposure to visible light for 30 min, 10 mg of Cu/ZIF-7 can completely decompose RhB solution (10 mg/L, 50 mL). The synergistic effect of the Cu/ZIF-7/H2O2/visible light system is attributed to visible light photocatalysis and Fenton-like reactions. Cu/ZIF-7 demonstrates excellent catalytic performance stability, with only a slight decrease in degradation efficiency from an initial 97.0% to 95.4% over four cycles. Additionally, spin-trapping ESR measurements and active species trapping experiments revealed that h+ and ·OH occupied a significant position for Rhodamine B (RhB) degradation. Degradation intermediate products of Rhodamine B have been identified using UPLC-MS, and the degradation pathways have been proposed and discussed. This work offers a facile and efficient technique for developing MOF-based visible light photocatalysts for water purification.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current