Vittorio Rampinelli, Alberto Paderno, Carlo Conti, Gabriele Testa, Claudia Lodovica Modesti, Edoardo Agosti, Isabelle Dohin, Tommaso Saccardo, Alessandro Vinciguerra, Marco Ferrari, Alberto Schreiber, Davide Mattavelli, Piero Nicolai, Chris Holsinger, Cesare Piazza
{"title":"Artificial intelligence for automatic detection and segmentation of nasal polyposis: a pilot study.","authors":"Vittorio Rampinelli, Alberto Paderno, Carlo Conti, Gabriele Testa, Claudia Lodovica Modesti, Edoardo Agosti, Isabelle Dohin, Tommaso Saccardo, Alessandro Vinciguerra, Marco Ferrari, Alberto Schreiber, Davide Mattavelli, Piero Nicolai, Chris Holsinger, Cesare Piazza","doi":"10.1007/s00405-024-08809-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Accurate diagnosis and quantification of polyps and symptoms are pivotal for planning the therapeutic strategy of Chronic rhinosinusitis with nasal polyposis (CRSwNP). This pilot study aimed to develop an artificial intelligence (AI)-based image analysis system capable of segmenting nasal polyps from nasal endoscopy videos.</p><p><strong>Methods: </strong>Recorded nasal videoendoscopies from 52 patients diagnosed with CRSwNP between 2019 and 2022 were retrospectively analyzed. Images extracted were manually segmented on the web application Roboflow. A dataset of 342 images was generated and divided into training (80%), validation (10%), and testing (10%) sets. The Ultralytics YOLOv8.0.28 model was employed for automated segmentation.</p><p><strong>Results: </strong>The YOLOv8s-seg model consisted of 195 layers and required 42.4 GFLOPs for operation. When tested against the validation set, the algorithm achieved a precision of 0.91, recall of 0.839, and mean average precision at 50% IoU (mAP50) of 0.949. For the segmentation task, similar metrics were observed, including a mAP ranging from 0.675 to 0.679 for IoUs between 50% and 95%.</p><p><strong>Conclusions: </strong>The study shows that a carefully trained AI algorithm can effectively identify and delineate nasal polyps in patients with CRSwNP. Despite certain limitations like the focus on CRSwNP-specific samples, the algorithm presents a promising complementary tool to existing diagnostic methods.</p>","PeriodicalId":11952,"journal":{"name":"European Archives of Oto-Rhino-Laryngology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Archives of Oto-Rhino-Laryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00405-024-08809-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Accurate diagnosis and quantification of polyps and symptoms are pivotal for planning the therapeutic strategy of Chronic rhinosinusitis with nasal polyposis (CRSwNP). This pilot study aimed to develop an artificial intelligence (AI)-based image analysis system capable of segmenting nasal polyps from nasal endoscopy videos.
Methods: Recorded nasal videoendoscopies from 52 patients diagnosed with CRSwNP between 2019 and 2022 were retrospectively analyzed. Images extracted were manually segmented on the web application Roboflow. A dataset of 342 images was generated and divided into training (80%), validation (10%), and testing (10%) sets. The Ultralytics YOLOv8.0.28 model was employed for automated segmentation.
Results: The YOLOv8s-seg model consisted of 195 layers and required 42.4 GFLOPs for operation. When tested against the validation set, the algorithm achieved a precision of 0.91, recall of 0.839, and mean average precision at 50% IoU (mAP50) of 0.949. For the segmentation task, similar metrics were observed, including a mAP ranging from 0.675 to 0.679 for IoUs between 50% and 95%.
Conclusions: The study shows that a carefully trained AI algorithm can effectively identify and delineate nasal polyps in patients with CRSwNP. Despite certain limitations like the focus on CRSwNP-specific samples, the algorithm presents a promising complementary tool to existing diagnostic methods.
期刊介绍:
Official Journal of
European Union of Medical Specialists – ORL Section and Board
Official Journal of Confederation of European Oto-Rhino-Laryngology Head and Neck Surgery
"European Archives of Oto-Rhino-Laryngology" publishes original clinical reports and clinically relevant experimental studies, as well as short communications presenting new results of special interest. With peer review by a respected international editorial board and prompt English-language publication, the journal provides rapid dissemination of information by authors from around the world. This particular feature makes it the journal of choice for readers who want to be informed about the continuing state of the art concerning basic sciences and the diagnosis and management of diseases of the head and neck on an international level.
European Archives of Oto-Rhino-Laryngology was founded in 1864 as "Archiv für Ohrenheilkunde" by A. von Tröltsch, A. Politzer and H. Schwartze.