Qianqian Zhang , Tong Wan , Guocheng Jin , Shiai Xu
{"title":"pH-responsive chitosan-mediated spherical mesoporous silica microspheres for high loading and controlled delivery of 5-Fluorouracil","authors":"Qianqian Zhang , Tong Wan , Guocheng Jin , Shiai Xu","doi":"10.1016/j.carres.2024.109206","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study is to develop a drug carrier to overcome the inherent drawbacks of 5-Fluorouracil (5-Fu), including low bioavailability, short half-life, and systemic toxicity. In the present work, mesoporous silica nanoparticles (MSNs) capped by chitosan (CS) to encapsulate 5-Fu (5-Fu MSNs/CS) were fabricated by the sol-gel process, ultrasonic impregnation, and emulsion cross-linking. The 5-Fu MSNs/CS microspheres exhibit pH-responsive drug release and remarkable drug encapsulation capacity, as well as perfect sphericity, high specific surface area (680.62 cm<sup>2</sup>/g), and uniform particle size (2.64 ± 0.05 μm). The drug-loading content and encapsulation efficiency are 14.12 ± 0.53 % and 82.21 ± 2.13 %, respectively. The cumulative release of 5-Fu from MSNs/CS microspheres is fast and sustained at pH 5.0 (89.56 ± 0.97 %) compared to that at pH 7.4 (57.88 ± 0.91 %) in 96 h, and it is Fickian diffusion controlled. In conclusion, the MSNs/CS microspheres prepared in this study could be potential carriers for 5-Fu delivery.</p></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"543 ","pages":"Article 109206"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000862152400185X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study is to develop a drug carrier to overcome the inherent drawbacks of 5-Fluorouracil (5-Fu), including low bioavailability, short half-life, and systemic toxicity. In the present work, mesoporous silica nanoparticles (MSNs) capped by chitosan (CS) to encapsulate 5-Fu (5-Fu MSNs/CS) were fabricated by the sol-gel process, ultrasonic impregnation, and emulsion cross-linking. The 5-Fu MSNs/CS microspheres exhibit pH-responsive drug release and remarkable drug encapsulation capacity, as well as perfect sphericity, high specific surface area (680.62 cm2/g), and uniform particle size (2.64 ± 0.05 μm). The drug-loading content and encapsulation efficiency are 14.12 ± 0.53 % and 82.21 ± 2.13 %, respectively. The cumulative release of 5-Fu from MSNs/CS microspheres is fast and sustained at pH 5.0 (89.56 ± 0.97 %) compared to that at pH 7.4 (57.88 ± 0.91 %) in 96 h, and it is Fickian diffusion controlled. In conclusion, the MSNs/CS microspheres prepared in this study could be potential carriers for 5-Fu delivery.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".