{"title":"Portable loop-mediated isothermal amplification device with spectrometric detection for rapid pathogen identification","authors":"Chun Yu Pan , Puchong Kijamnajsuk , Jyh Jian Chen","doi":"10.1016/j.ab.2024.115615","DOIUrl":null,"url":null,"abstract":"<div><p>With the rise in extreme weather due to global warming, coupled with globalization facilitating the spread of infectious diseases, there's a pressing need for portable testing platforms offering simplicity, low cost, and remote transmission, particularly beneficial in resource-limited and non-urban areas. We have developed a portable device using loop-mediated isothermal amplification (LAMP) with spectrometric detection to identify <em>Salmonella Typhimurium</em> DNA. The device utilizes the LinkIt 7697 microcontroller and a microspectrometer to capture and transmit spectral signals in real-time, allowing for improved monitoring and analysis of the reaction progress. We built a hand-held box containing a microspectrometer, thermoelectric cooler, ultraviolet LED, disposable reaction tube, and homemade thermal module, all powered by rechargeable batteries. Additionally, we conducted thorough experiments to ensure temperature accuracy within 1 °C under thermal control, developed a heating module with a LinkIt 7697 IoT development board to heat the DNA mixture to the reaction temperature within 3 min, and integrated foam insulation and a 3D-printed frame to enhance the device's thermal stability. We successfully demonstrated the amplification of <em>Salmonella Typhimurium</em> DNA with an impressive sensitivity of 2.83 × 10<sup>−4</sup> ng/μL. A remote webpage interface allows for monitoring the temperature and fluorescence during the LAMP process, improving usability. This portable LAMP device with real-time detection offers a cost-effective solution for detecting <em>Salmonella Typhimurium</em> in food products. Its unique design and capabilities make it a promising tool for ensuring food safety.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724001593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rise in extreme weather due to global warming, coupled with globalization facilitating the spread of infectious diseases, there's a pressing need for portable testing platforms offering simplicity, low cost, and remote transmission, particularly beneficial in resource-limited and non-urban areas. We have developed a portable device using loop-mediated isothermal amplification (LAMP) with spectrometric detection to identify Salmonella Typhimurium DNA. The device utilizes the LinkIt 7697 microcontroller and a microspectrometer to capture and transmit spectral signals in real-time, allowing for improved monitoring and analysis of the reaction progress. We built a hand-held box containing a microspectrometer, thermoelectric cooler, ultraviolet LED, disposable reaction tube, and homemade thermal module, all powered by rechargeable batteries. Additionally, we conducted thorough experiments to ensure temperature accuracy within 1 °C under thermal control, developed a heating module with a LinkIt 7697 IoT development board to heat the DNA mixture to the reaction temperature within 3 min, and integrated foam insulation and a 3D-printed frame to enhance the device's thermal stability. We successfully demonstrated the amplification of Salmonella Typhimurium DNA with an impressive sensitivity of 2.83 × 10−4 ng/μL. A remote webpage interface allows for monitoring the temperature and fluorescence during the LAMP process, improving usability. This portable LAMP device with real-time detection offers a cost-effective solution for detecting Salmonella Typhimurium in food products. Its unique design and capabilities make it a promising tool for ensuring food safety.