On Weakly Contracting Dynamics for Convex Optimization

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Veronica Centorrino;Alexander Davydov;Anand Gokhale;Giovanni Russo;Francesco Bullo
{"title":"On Weakly Contracting Dynamics for Convex Optimization","authors":"Veronica Centorrino;Alexander Davydov;Anand Gokhale;Giovanni Russo;Francesco Bullo","doi":"10.1109/LCSYS.2024.3414348","DOIUrl":null,"url":null,"abstract":"We analyze the convergence behavior of globally weakly and locally strongly contracting dynamics. Such dynamics naturally arise in the context of convex optimization problems with a unique minimizer. We show that convergence to the equilibrium is linear-exponential, in the sense that the distance between each solution and the equilibrium is upper bounded by a function that first decreases linearly and then exponentially. As we show, the linear-exponential dependency arises naturally in certain dynamics with saturations. Additionally, we provide a sufficient condition for local input-to-state stability. Finally, we illustrate our results on, and propose a conjecture for, continuous-time dynamical systems solving linear programs.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10556639/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the convergence behavior of globally weakly and locally strongly contracting dynamics. Such dynamics naturally arise in the context of convex optimization problems with a unique minimizer. We show that convergence to the equilibrium is linear-exponential, in the sense that the distance between each solution and the equilibrium is upper bounded by a function that first decreases linearly and then exponentially. As we show, the linear-exponential dependency arises naturally in certain dynamics with saturations. Additionally, we provide a sufficient condition for local input-to-state stability. Finally, we illustrate our results on, and propose a conjecture for, continuous-time dynamical systems solving linear programs.
关于凸优化的弱契约动力学
我们分析了全局弱收缩和局部强收缩动力学的收敛行为。这种动力学自然出现在具有唯一最小值的凸优化问题中。我们证明,向均衡的收敛是线性-指数收敛,即每个解与均衡之间的距离都有一个函数的上限,这个函数先是线性递减,然后是指数递减。正如我们所展示的,线性-指数依赖性自然出现在某些饱和动力学中。此外,我们还提供了局部输入到状态稳定性的充分条件。最后,我们说明了我们在求解线性程序的连续时间动力系统上的结果,并提出了一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信