Physics-Informed Extreme Learning Machine Lyapunov Functions

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Ruikun Zhou;Maxwell Fitzsimmons;Yiming Meng;Jun Liu
{"title":"Physics-Informed Extreme Learning Machine Lyapunov Functions","authors":"Ruikun Zhou;Maxwell Fitzsimmons;Yiming Meng;Jun Liu","doi":"10.1109/LCSYS.2024.3416407","DOIUrl":null,"url":null,"abstract":"We demonstrate that a convex optimization formulation of physics-informed neural networks for solving partial differential equations can address a variety of computationally challenging tasks in nonlinear system analysis and control. This includes computing Lyapunov functions, region-of-attraction estimates, and optimal controllers. Through numerical examples, we illustrate that the formulation is effective in solving both low- and high-dimensional analysis and control problems. We compare it with alternative approaches, including semidefinite programming and nonconvex neural network optimization, to demonstrate its potential advantages.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10560468/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate that a convex optimization formulation of physics-informed neural networks for solving partial differential equations can address a variety of computationally challenging tasks in nonlinear system analysis and control. This includes computing Lyapunov functions, region-of-attraction estimates, and optimal controllers. Through numerical examples, we illustrate that the formulation is effective in solving both low- and high-dimensional analysis and control problems. We compare it with alternative approaches, including semidefinite programming and nonconvex neural network optimization, to demonstrate its potential advantages.
物理信息极限学习机 Lyapunov 函数
我们证明,用于求解偏微分方程的物理信息神经网络的凸优化表述可以解决非线性系统分析和控制中各种具有计算挑战性的任务。这包括计算 Lyapunov 函数、吸引区域估计和最优控制器。我们通过数值示例说明,该公式能有效解决低维和高维分析与控制问题。我们将其与其他方法(包括半定量编程和非凸神经网络优化)进行比较,以展示其潜在优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信