{"title":"Actor–Critic Physics-Informed Neural Lyapunov Control","authors":"Jiarui Wang;Mahyar Fazlyab","doi":"10.1109/LCSYS.2024.3416235","DOIUrl":null,"url":null,"abstract":"Designing control policies for stabilization tasks with provable guarantees is a long-standing problem in nonlinear control. A crucial performance metric is the size of the resulting region of attraction, which essentially serves as a robustness “margin” of the closed-loop system against uncertainties. In this letter, we propose a new method to train a stabilizing neural network controller along with its corresponding Lyapunov certificate, aiming to maximize the resulting region of attraction while respecting the actuation constraints. Crucial to our approach is the use of Zubov’s Partial Differential Equation (PDE), which precisely characterizes the true region of attraction of a given control policy. Our framework follows an actor-critic pattern where we alternate between improving the control policy (actor) and learning a Zubov function (critic). Finally, we compute the largest certifiable region of attraction by invoking an SMT solver after the training procedure. Our numerical experiments on several design problems show consistent and significant improvements in the size of the resulting region of attraction.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10560463/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Designing control policies for stabilization tasks with provable guarantees is a long-standing problem in nonlinear control. A crucial performance metric is the size of the resulting region of attraction, which essentially serves as a robustness “margin” of the closed-loop system against uncertainties. In this letter, we propose a new method to train a stabilizing neural network controller along with its corresponding Lyapunov certificate, aiming to maximize the resulting region of attraction while respecting the actuation constraints. Crucial to our approach is the use of Zubov’s Partial Differential Equation (PDE), which precisely characterizes the true region of attraction of a given control policy. Our framework follows an actor-critic pattern where we alternate between improving the control policy (actor) and learning a Zubov function (critic). Finally, we compute the largest certifiable region of attraction by invoking an SMT solver after the training procedure. Our numerical experiments on several design problems show consistent and significant improvements in the size of the resulting region of attraction.