Robust Maneuver Planning With Scalable Prediction Horizons: A Move Blocking Approach

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Philipp Schitz;Johann C. Dauer;Paolo Mercorelli
{"title":"Robust Maneuver Planning With Scalable Prediction Horizons: A Move Blocking Approach","authors":"Philipp Schitz;Johann C. Dauer;Paolo Mercorelli","doi":"10.1109/LCSYS.2024.3414971","DOIUrl":null,"url":null,"abstract":"Implementation of Model Predictive Control (MPC) on hardware with limited computational resources remains a challenge. Especially for long-distance maneuvers that require small sampling times, the necessary horizon lengths prevent its application on onboard computers. In this letter, we propose a computationally efficient tube-based shrinking horizon MPC that is scalable to long prediction horizons. Using move blocking, we ensure that a given number of decision inputs is efficiently used throughout the maneuver. Next, a method to substantially reduce the number of constraints is introduced. The approach is demonstrated with a helicopter landing on an inclined platform using a prediction horizon of 300 steps. The constraint reduction decreases the computation time by an order of magnitude with a slight increase in trajectory cost.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10557774/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Implementation of Model Predictive Control (MPC) on hardware with limited computational resources remains a challenge. Especially for long-distance maneuvers that require small sampling times, the necessary horizon lengths prevent its application on onboard computers. In this letter, we propose a computationally efficient tube-based shrinking horizon MPC that is scalable to long prediction horizons. Using move blocking, we ensure that a given number of decision inputs is efficiently used throughout the maneuver. Next, a method to substantially reduce the number of constraints is introduced. The approach is demonstrated with a helicopter landing on an inclined platform using a prediction horizon of 300 steps. The constraint reduction decreases the computation time by an order of magnitude with a slight increase in trajectory cost.
利用可扩展的预测视野进行稳健的机动规划:移动阻断方法
在计算资源有限的硬件上实现模型预测控制(MPC)仍然是一项挑战。特别是对于需要较小采样时间的长距离机动,必要的视距长度使其无法在机载计算机上应用。在这封信中,我们提出了一种计算效率高、可扩展至长预测视界的基于管道的收缩视界 MPC。通过移动阻塞,我们确保在整个机动过程中有效使用给定数量的决策输入。接下来,我们将介绍一种大幅减少约束条件数量的方法。我们以直升机在倾斜平台上着陆为例来演示这种方法,预测范围为 300 步。减少约束条件后,计算时间减少了一个数量级,但轨迹成本略有增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信