Linear Quadratic Zonotopic Control of Switched Systems: Application to Autonomous Vehicle Path-Tracking

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Shuang Zhang;Sara Ifqir;Vicenç Puig
{"title":"Linear Quadratic Zonotopic Control of Switched Systems: Application to Autonomous Vehicle Path-Tracking","authors":"Shuang Zhang;Sara Ifqir;Vicenç Puig","doi":"10.1109/LCSYS.2024.3416069","DOIUrl":null,"url":null,"abstract":"This letter proposes a zonotopic approach for the state feedback control problem of a class of uncertain switched systems subject to unknown but bounded disturbances and measurement noises. The proposed approach is the zonotopic analogous case of the switched Linear Quadratic Gaussian (LQG) control, in which the feedback loop is closed using the optimal estimates of a Switched Zonotopic Kalman Filter (SZKF) leading to a Switched Linear Quadratic Zonotopic (SLQZ) control scheme. In this context, first, a SZKF with offline filter gains design is proposed so that the unmeasurable system states can be estimated. Then, to tackle the synthesis of the SZKF and the state feedback controller, separation principle is proved so that the computation of the optimal controller and estimator can be done separately by finding the solutions to a finite set of Linear Matrix Inequalities (LMIs). At last, a reference path tracking controller of the vehicle lateral dynamics is designed to demonstrate the validity and performance of the proposed method.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10560008/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter proposes a zonotopic approach for the state feedback control problem of a class of uncertain switched systems subject to unknown but bounded disturbances and measurement noises. The proposed approach is the zonotopic analogous case of the switched Linear Quadratic Gaussian (LQG) control, in which the feedback loop is closed using the optimal estimates of a Switched Zonotopic Kalman Filter (SZKF) leading to a Switched Linear Quadratic Zonotopic (SLQZ) control scheme. In this context, first, a SZKF with offline filter gains design is proposed so that the unmeasurable system states can be estimated. Then, to tackle the synthesis of the SZKF and the state feedback controller, separation principle is proved so that the computation of the optimal controller and estimator can be done separately by finding the solutions to a finite set of Linear Matrix Inequalities (LMIs). At last, a reference path tracking controller of the vehicle lateral dynamics is designed to demonstrate the validity and performance of the proposed method.
开关系统的线性二次零点控制:应用于自主车辆路径跟踪
这封信针对一类不确定开关系统的状态反馈控制问题提出了一种区位方法,该系统受到未知但有界的干扰和测量噪声的影响。所提出的方法是开关线性四元高斯(LQG)控制的区域异步类比案例,其中使用开关区域异步卡尔曼滤波器(SZKF)的最优估计值闭合反馈回路,从而形成开关线性四元异步(SLQZ)控制方案。在此背景下,首先提出了一种具有离线滤波增益设计的 SZKF,以便对不可测的系统状态进行估计。然后,为了解决 SZKF 和状态反馈控制器的合成问题,证明了分离原理,这样就可以通过寻找有限线性矩阵不等式(LMI)的解来分别计算最优控制器和估计器。最后,设计了一个车辆横向动力学参考路径跟踪控制器,以证明所提方法的有效性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信