A Trust-Region Method for Data-Driven Iterative Learning Control of Nonlinear Systems

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Jia Wang;Leander Hemelhof;Ivan Markovsky;Panagiotis Patrinos
{"title":"A Trust-Region Method for Data-Driven Iterative Learning Control of Nonlinear Systems","authors":"Jia Wang;Leander Hemelhof;Ivan Markovsky;Panagiotis Patrinos","doi":"10.1109/LCSYS.2024.3417805","DOIUrl":null,"url":null,"abstract":"This letter employs a derivative-free trust-region method to solve the norm-optimal iterative learning control problem for nonlinear systems with unknown dynamics. The iteration process is composed by two kinds of trials: main and additional trials. The tracking error is reduced in each main trial, and the additional trials explore the nonlinear dynamics around the main trial input. Then the trust-region subproblem is constructed based on the additional trial data, and solved to generate the next main trial input. The convergence of the tracking error is proved under mild assumptions. Our method is illustrated in simulations \n<uri>https://github.com/JiaaaWang/TRILC</uri>\n.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10566852/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter employs a derivative-free trust-region method to solve the norm-optimal iterative learning control problem for nonlinear systems with unknown dynamics. The iteration process is composed by two kinds of trials: main and additional trials. The tracking error is reduced in each main trial, and the additional trials explore the nonlinear dynamics around the main trial input. Then the trust-region subproblem is constructed based on the additional trial data, and solved to generate the next main trial input. The convergence of the tracking error is proved under mild assumptions. Our method is illustrated in simulations https://github.com/JiaaaWang/TRILC .
非线性系统数据驱动迭代学习控制的信任区域法
本文采用无导数信任区域法求解未知动态非线性系统的规范最优迭代学习控制问题。迭代过程由两种试验组成:主要试验和附加试验。每次主试验都会减小跟踪误差,而附加试验则会探索主试验输入周围的非线性动态。然后根据附加试验数据构建信任区域子问题,并求解以生成下一个主试验输入。在温和的假设条件下,证明了跟踪误差的收敛性。我们的方法通过模拟 https://github.com/JiaaaWang/TRILC 进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信