{"title":"Perinatal Cardiac Functional Adaptation in Hypoplastic Left Heart Syndrome: A Longitudinal Analysis","authors":"","doi":"10.1016/j.echo.2024.06.020","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The perinatal transition is characterized by acute changes in cardiac loading. Compared with normal newborn combined cardiac output (CCO), single right ventricular (RV) output of neonates with hypoplastic left heart syndrome (HLHS) is markedly greater. The aim of this study was to examine the mechanisms of cardiac adaptation that facilitate this perinatal transition from late fetal to early neonatal life in HLHS.</div></div><div><h3>Methods</h3><div>Prospectively recruited pregnancies complicated by fetal HLHS (<em>n</em> = 35) and healthy control subjects (Ctrl; <em>n</em> = 17) underwent serial echocardiography in late gestation (38 ± 1 weeks) and 6, 24, and 48 hours after birth. Cardiac function was assessed using conventional, Doppler tissue, and speckle-tracking echocardiography.</div></div><div><h3>Results</h3><div>Term fetuses with HLHS had RV output comparable with Ctrl CCO via higher stroke volume. Compared with both left ventricular and RV indices of Ctrl, they exhibited globular and dilated right ventricles with reduced relative wall thickness (0.40 ± 0.08 vs 0.49 ± 0.10, <em>P</em> < .01), increased Tei index′ (HLHS vs Ctrl left ventricle/Ctrl right ventricle: sphericity index, 0.9 ± 0.25 vs 0.5 ± 0.10/0.6 ± 0.11; RV area index, 28 ± 6 vs 15 ± 3/17 ± 5 cm<sup>2</sup>/m<sup>2</sup>; Tei index′, 0.65 ± 0.11 vs 0.43 ± 0.07/0.45 ± 0.09; <em>P</em> < .0001 for all). Neonates with HLHS generated elevated RV cardiac output compared with Ctrl CCO via higher heart rate and stroke volume, with further RV dilatation, increased longitudinal systolic strain at 48 hours (−17 ± 4% vs −14 ± 3%/ 14 ± 5%) with reduced circumferential and rotational myocardial deformation and altered diastolic function. Neonates with HLHS also demonstrated right atrial enlargement with increased longitudinal strain: 6 hours (33 ± 12% vs 26 ± 6%), 24 hours (37 ± 15% vs 26 ± 13%), and 48 hours (38 ± 11% vs 24 ± 13%) (<em>P</em> < .0001).</div></div><div><h3>Conclusions</h3><div>Term fetuses with HLHS exhibit altered RV geometry and RV systolic and diastolic functional parameters. After birth, further alterations in these cardiac parameters likely reflect adaptation to acutely altered RV loading from increasing cardiac output and pulmonary artery flow demands.</div></div>","PeriodicalId":50011,"journal":{"name":"Journal of the American Society of Echocardiography","volume":"37 11","pages":"Pages 1062-1072"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society of Echocardiography","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089473172400350X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The perinatal transition is characterized by acute changes in cardiac loading. Compared with normal newborn combined cardiac output (CCO), single right ventricular (RV) output of neonates with hypoplastic left heart syndrome (HLHS) is markedly greater. The aim of this study was to examine the mechanisms of cardiac adaptation that facilitate this perinatal transition from late fetal to early neonatal life in HLHS.
Methods
Prospectively recruited pregnancies complicated by fetal HLHS (n = 35) and healthy control subjects (Ctrl; n = 17) underwent serial echocardiography in late gestation (38 ± 1 weeks) and 6, 24, and 48 hours after birth. Cardiac function was assessed using conventional, Doppler tissue, and speckle-tracking echocardiography.
Results
Term fetuses with HLHS had RV output comparable with Ctrl CCO via higher stroke volume. Compared with both left ventricular and RV indices of Ctrl, they exhibited globular and dilated right ventricles with reduced relative wall thickness (0.40 ± 0.08 vs 0.49 ± 0.10, P < .01), increased Tei index′ (HLHS vs Ctrl left ventricle/Ctrl right ventricle: sphericity index, 0.9 ± 0.25 vs 0.5 ± 0.10/0.6 ± 0.11; RV area index, 28 ± 6 vs 15 ± 3/17 ± 5 cm2/m2; Tei index′, 0.65 ± 0.11 vs 0.43 ± 0.07/0.45 ± 0.09; P < .0001 for all). Neonates with HLHS generated elevated RV cardiac output compared with Ctrl CCO via higher heart rate and stroke volume, with further RV dilatation, increased longitudinal systolic strain at 48 hours (−17 ± 4% vs −14 ± 3%/ 14 ± 5%) with reduced circumferential and rotational myocardial deformation and altered diastolic function. Neonates with HLHS also demonstrated right atrial enlargement with increased longitudinal strain: 6 hours (33 ± 12% vs 26 ± 6%), 24 hours (37 ± 15% vs 26 ± 13%), and 48 hours (38 ± 11% vs 24 ± 13%) (P < .0001).
Conclusions
Term fetuses with HLHS exhibit altered RV geometry and RV systolic and diastolic functional parameters. After birth, further alterations in these cardiac parameters likely reflect adaptation to acutely altered RV loading from increasing cardiac output and pulmonary artery flow demands.
期刊介绍:
The Journal of the American Society of Echocardiography(JASE) brings physicians and sonographers peer-reviewed original investigations and state-of-the-art review articles that cover conventional clinical applications of cardiovascular ultrasound, as well as newer techniques with emerging clinical applications. These include three-dimensional echocardiography, strain and strain rate methods for evaluating cardiac mechanics and interventional applications.