Isaiah Lahr, Saghir Alfasly, Peyman Nejat, Jibran Khan, Luke Kottom, Vaishnavi Kumbhar, Areej Alsaafin, Abubakr Shafique, Sobhan Hemati, Ghazal Alabtah, Nneka Comfere, Dennis Murphree, Aaron Mangold, Saba Yasir, Chady Meroueh, Lisa Boardman, Vijay H Shah, Joaquin J Garcia, H R Tizhoosh
{"title":"Analysis and Validation of Image Search Engines in Histopathology.","authors":"Isaiah Lahr, Saghir Alfasly, Peyman Nejat, Jibran Khan, Luke Kottom, Vaishnavi Kumbhar, Areej Alsaafin, Abubakr Shafique, Sobhan Hemati, Ghazal Alabtah, Nneka Comfere, Dennis Murphree, Aaron Mangold, Saba Yasir, Chady Meroueh, Lisa Boardman, Vijay H Shah, Joaquin J Garcia, H R Tizhoosh","doi":"10.1109/RBME.2024.3425769","DOIUrl":null,"url":null,"abstract":"<p><p>Searching for similar images in archives of histology and histopathology images is a crucial task that may aid in patient tissue comparison for various purposes, ranging from triaging and diagnosis to prognosis and prediction. Whole slide images (WSIs) are highly detailed digital representations of tissue specimens mounted on glass slides. Matching WSI to WSI can serve as the critical method for patient tissue comparison. In this paper, we report extensive analysis and validation of four search methods bag of visual words (BoVW), Yottixel, SISH, RetCCL, and some of their potential variants. We analyze their algorithms and structures and assess their performance. For this evaluation, we utilized four internal datasets (1269 patients) and three public datasets (1207 patients), totaling more than 200, 000 patches from 38 different classes/subtypes across five primary sites. Certain search engines, for example, BoVW, exhibit notable efficiency and speed but suffer from low accuracy. Conversely, search engines like Yottixel demonstrate efficiency and speed, providing moderately accurate results. Recent proposals, including SISH, display inefficiency and yield inconsistent outcomes, while alternatives like RetCCL prove inadequate in both accuracy and efficiency. Further research is imperative to address the dual aspects of accuracy and minimal storage requirements in histopathological image search.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":17.2000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/RBME.2024.3425769","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Searching for similar images in archives of histology and histopathology images is a crucial task that may aid in patient tissue comparison for various purposes, ranging from triaging and diagnosis to prognosis and prediction. Whole slide images (WSIs) are highly detailed digital representations of tissue specimens mounted on glass slides. Matching WSI to WSI can serve as the critical method for patient tissue comparison. In this paper, we report extensive analysis and validation of four search methods bag of visual words (BoVW), Yottixel, SISH, RetCCL, and some of their potential variants. We analyze their algorithms and structures and assess their performance. For this evaluation, we utilized four internal datasets (1269 patients) and three public datasets (1207 patients), totaling more than 200, 000 patches from 38 different classes/subtypes across five primary sites. Certain search engines, for example, BoVW, exhibit notable efficiency and speed but suffer from low accuracy. Conversely, search engines like Yottixel demonstrate efficiency and speed, providing moderately accurate results. Recent proposals, including SISH, display inefficiency and yield inconsistent outcomes, while alternatives like RetCCL prove inadequate in both accuracy and efficiency. Further research is imperative to address the dual aspects of accuracy and minimal storage requirements in histopathological image search.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.