Matheus Macedo-Lima, Lashaka Sierra Hamlette, Melissa L Caras
{"title":"Orbitofrontal cortex modulates auditory cortical sensitivity and sound perception in Mongolian gerbils.","authors":"Matheus Macedo-Lima, Lashaka Sierra Hamlette, Melissa L Caras","doi":"10.1016/j.cub.2024.06.036","DOIUrl":null,"url":null,"abstract":"<p><p>Sensory perception is dynamic, quickly adapting to sudden shifts in environmental or behavioral context. Although decades of work have established that these dynamics are mediated by rapid fluctuations in sensory cortical activity, we have a limited understanding of the brain regions and pathways that orchestrate these changes. Neurons in the orbitofrontal cortex (OFC) encode contextual information, and recent data suggest that some of these signals are transmitted to sensory cortices. Whether and how these signals shape sensory encoding and perceptual sensitivity remain uncertain. Here, we asked whether the OFC mediates context-dependent changes in auditory cortical sensitivity and sound perception by monitoring and manipulating OFC activity in freely moving Mongolian gerbils of both sexes under two behavioral contexts: passive sound exposure and engagement in an amplitude modulation (AM) detection task. We found that the majority of OFC neurons, including the specific subset that innervates the auditory cortex, were strongly modulated by task engagement. Pharmacological inactivation of the OFC prevented rapid context-dependent changes in auditory cortical firing and significantly impaired behavioral AM detection. Our findings suggest that contextual information from the OFC mediates rapid plasticity in the auditory cortex and facilitates the perception of behaviorally relevant sounds.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303099/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.06.036","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sensory perception is dynamic, quickly adapting to sudden shifts in environmental or behavioral context. Although decades of work have established that these dynamics are mediated by rapid fluctuations in sensory cortical activity, we have a limited understanding of the brain regions and pathways that orchestrate these changes. Neurons in the orbitofrontal cortex (OFC) encode contextual information, and recent data suggest that some of these signals are transmitted to sensory cortices. Whether and how these signals shape sensory encoding and perceptual sensitivity remain uncertain. Here, we asked whether the OFC mediates context-dependent changes in auditory cortical sensitivity and sound perception by monitoring and manipulating OFC activity in freely moving Mongolian gerbils of both sexes under two behavioral contexts: passive sound exposure and engagement in an amplitude modulation (AM) detection task. We found that the majority of OFC neurons, including the specific subset that innervates the auditory cortex, were strongly modulated by task engagement. Pharmacological inactivation of the OFC prevented rapid context-dependent changes in auditory cortical firing and significantly impaired behavioral AM detection. Our findings suggest that contextual information from the OFC mediates rapid plasticity in the auditory cortex and facilitates the perception of behaviorally relevant sounds.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.