Human cardiac β-myosin powerstroke energetics: Thin filament, Pi displacement, and mutation effects.

IF 3.2 3区 生物学 Q2 BIOPHYSICS
Biophysical journal Pub Date : 2024-09-17 Epub Date: 2024-07-22 DOI:10.1016/j.bpj.2024.07.012
Bai Hei, Jil C Tardiff, Steven D Schwartz
{"title":"Human cardiac β-myosin powerstroke energetics: Thin filament, Pi displacement, and mutation effects.","authors":"Bai Hei, Jil C Tardiff, Steven D Schwartz","doi":"10.1016/j.bpj.2024.07.012","DOIUrl":null,"url":null,"abstract":"<p><p>The powerstroke of human cardiac β-myosin is an important stage of the cross-bridge cycle that generates force for muscle contraction. However, the starting structure of this process has never been resolved, and the relative timing of the powerstroke and inorganic phosphate (Pi) release is still controversial. In this study, we generated an atomistic model of myosin on the thin filament and utilized metadynamics simulations to predict the absent starting structure of the powerstroke. We demonstrated that the displacement of Pi from the active site during the powerstroke is likely necessary, reducing the energy barrier of the conformation change. The effects of the presence of the thin filament, the hypertrophic cardiomyopathy mutation R712L, and the binding of mavacamten on the powerstroke process were also investigated.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427785/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.07.012","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The powerstroke of human cardiac β-myosin is an important stage of the cross-bridge cycle that generates force for muscle contraction. However, the starting structure of this process has never been resolved, and the relative timing of the powerstroke and inorganic phosphate (Pi) release is still controversial. In this study, we generated an atomistic model of myosin on the thin filament and utilized metadynamics simulations to predict the absent starting structure of the powerstroke. We demonstrated that the displacement of Pi from the active site during the powerstroke is likely necessary, reducing the energy barrier of the conformation change. The effects of the presence of the thin filament, the hypertrophic cardiomyopathy mutation R712L, and the binding of mavacamten on the powerstroke process were also investigated.

人类心脏 β 肌球蛋白冲程能量学:细丝、Pi 置换和突变效应
人类心脏 β 肌球蛋白的动力冲程是产生肌肉收缩力的交桥循环的一个重要阶段。然而,这一过程的起始结构一直未得到解决,而动力冲程与无机磷酸(Pi)释放的相对时间仍存在争议。在这项研究中,我们生成了细丝上肌球蛋白的原子模型,并利用元动力学模拟预测了动力冲程的缺失起始结构。我们证明,在动力冲程过程中,Pi 从活性位点的位移可能是必要的,从而降低了构象变化的能量障碍。我们还研究了细丝的存在、肥厚型心肌病(HCM)突变 R712L 以及 Mavacamten 的结合对动力冲程过程的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信