Pipette-tip solid-phase extraction coupled with matrix-assisted laser desorption/ionization mass spectrometry enables rapid and high-throughput analysis of antidepressants in rat serum.
{"title":"Pipette-tip solid-phase extraction coupled with matrix-assisted laser desorption/ionization mass spectrometry enables rapid and high-throughput analysis of antidepressants in rat serum.","authors":"Zhi Sun, Fangfang Wang, Wenxuan Li, Ruobing Ren, Peipei Zhou, Qingquan Jia, Lingguo Zhao, Di Chen, Lihua Zuo","doi":"10.1007/s00216-024-05439-x","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic drug monitoring is essential for ensuring the efficacy and safety of medications. This study introduces a streamlined approach that combines pipette-tip solid-phase extraction (PT-SPE) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), facilitating rapid and high-throughput monitoring of drug concentrations. As a demonstration, this method was applied to the extraction and quantification of antidepressants in serum. Utilizing Zip-Tip C18, the method enabled the extraction of antidepressants from complex biological matrices in less than 2 min, with the subsequent MALDI-MS analysis yielding results in just 1 min. Optimal extraction recoveries were achieved using a sampling solution at pH 9.0 and a 10 μL ethanol desorption solution containing 0.1% phosphoric acid. For MALDI analysis, 2,5-dihydroxybenzoic acid was identified as the most effective matrix for producing the highest signal intensity. The quantification strategy exhibited robust linearities (R<sup>2</sup> ≥ 0.997) and satisfactory limits of quantification, ranging from 0.05 to 0.5 μg/mL for a suite of antidepressants. The application for monitoring dynamic concentration changes of antidepressants in rat serum emphasized the method's efficacy. This strategy offers the advantages of high throughput, minimal sample usage, environmental sustainability, and simplicity, providing ideas and a reference basis for the subsequent development of methods for therapeutic drug monitoring.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05439-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Therapeutic drug monitoring is essential for ensuring the efficacy and safety of medications. This study introduces a streamlined approach that combines pipette-tip solid-phase extraction (PT-SPE) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), facilitating rapid and high-throughput monitoring of drug concentrations. As a demonstration, this method was applied to the extraction and quantification of antidepressants in serum. Utilizing Zip-Tip C18, the method enabled the extraction of antidepressants from complex biological matrices in less than 2 min, with the subsequent MALDI-MS analysis yielding results in just 1 min. Optimal extraction recoveries were achieved using a sampling solution at pH 9.0 and a 10 μL ethanol desorption solution containing 0.1% phosphoric acid. For MALDI analysis, 2,5-dihydroxybenzoic acid was identified as the most effective matrix for producing the highest signal intensity. The quantification strategy exhibited robust linearities (R2 ≥ 0.997) and satisfactory limits of quantification, ranging from 0.05 to 0.5 μg/mL for a suite of antidepressants. The application for monitoring dynamic concentration changes of antidepressants in rat serum emphasized the method's efficacy. This strategy offers the advantages of high throughput, minimal sample usage, environmental sustainability, and simplicity, providing ideas and a reference basis for the subsequent development of methods for therapeutic drug monitoring.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.