{"title":"Evaluating impacts of climate and management on reservoir water quality using environmental fluid dynamics code.","authors":"Qingqing Sun, Zhifeng Yan, Jingfu Wang, Jing-An Chen, Xiaodong Li, Weiwei Shi, Jing Liu, Si-Liang Li","doi":"10.1016/j.scitotenv.2024.174608","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change and human interference, notably nutrient input, affect the water quality. Nitrogen (N) and phosphorus (P) are pivotal in managing eutrophication. This study investigated the effects of water dynamics and chemical constituents on water quality in Hongfeng Lake, a typical weakly stratified reservoir suffering from algae blooms in Southwest China, using the Environmental Fluid Dynamics Code. Leveraging climate, hydrological, and water quality data, we constructed, calibrated, and validated the temperature-hydrodynamics-water quality-sediment model. Various scenarios were analyzed, including wind speed, air temperature, solar radiation, rainfall, water discharge, N and P external input, and internal release. The findings revealed that no rain and warming increased trophic state index (TSI) and chlorophyll-a (Chl-a) concentration, and no solar radiation initially elevated nitrate concentration, followed by an increase in ammonium concentration. Besides, no solar radiation and changes in rainfall significantly increased total phosphate concentration. The management scenarios of N and P reduction, halving tributary, and mainstream flow scenarios improved water quality and reduced eutrophication. The wind speed under the N and P reduced scenarios showed that a doubling in wind led to increased concentrations of the particulate organic matter, Chl-a, and dissolved oxygen, alongside decreased ammonium and nitrate, while TSI exhibited minimal change. However, 5- and 10-times wind speed scenarios amplified TSI in shallow water, potentially due to a substantial rise in internal nutrient release. The degradation trend observed in drinking water quality amid climate change (warming and flooding) raises concerns regarding health-related risks. These simulations provided the quantified influence of climate change and environmental management strategies on water quality in the weakly stratified reservoir, notably highlighting the looming threat of exacerbated eutrophication due to warming, necessitating more stringent N and P reduction measures compared to current practices.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"174608"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.174608","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change and human interference, notably nutrient input, affect the water quality. Nitrogen (N) and phosphorus (P) are pivotal in managing eutrophication. This study investigated the effects of water dynamics and chemical constituents on water quality in Hongfeng Lake, a typical weakly stratified reservoir suffering from algae blooms in Southwest China, using the Environmental Fluid Dynamics Code. Leveraging climate, hydrological, and water quality data, we constructed, calibrated, and validated the temperature-hydrodynamics-water quality-sediment model. Various scenarios were analyzed, including wind speed, air temperature, solar radiation, rainfall, water discharge, N and P external input, and internal release. The findings revealed that no rain and warming increased trophic state index (TSI) and chlorophyll-a (Chl-a) concentration, and no solar radiation initially elevated nitrate concentration, followed by an increase in ammonium concentration. Besides, no solar radiation and changes in rainfall significantly increased total phosphate concentration. The management scenarios of N and P reduction, halving tributary, and mainstream flow scenarios improved water quality and reduced eutrophication. The wind speed under the N and P reduced scenarios showed that a doubling in wind led to increased concentrations of the particulate organic matter, Chl-a, and dissolved oxygen, alongside decreased ammonium and nitrate, while TSI exhibited minimal change. However, 5- and 10-times wind speed scenarios amplified TSI in shallow water, potentially due to a substantial rise in internal nutrient release. The degradation trend observed in drinking water quality amid climate change (warming and flooding) raises concerns regarding health-related risks. These simulations provided the quantified influence of climate change and environmental management strategies on water quality in the weakly stratified reservoir, notably highlighting the looming threat of exacerbated eutrophication due to warming, necessitating more stringent N and P reduction measures compared to current practices.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.