Nguyen Van Hung, Tran Ngoc Thach, Nguyen Ngoc Hoang, Nguyen Cao Quan Binh, Dang Minh Tâm, Tran Tan Hau, Duong Thi Tu Anh, Trinh Quang Khuong, Vo Thi Bich Chi, Truong Thi Kieu Lien, Martin Gummert, Tovohery Rakotoson, Kazuki Saito, Virender Kumar
{"title":"Mechanized wet direct seeding for increased rice production efficiency and reduced carbon footprint","authors":"Nguyen Van Hung, Tran Ngoc Thach, Nguyen Ngoc Hoang, Nguyen Cao Quan Binh, Dang Minh Tâm, Tran Tan Hau, Duong Thi Tu Anh, Trinh Quang Khuong, Vo Thi Bich Chi, Truong Thi Kieu Lien, Martin Gummert, Tovohery Rakotoson, Kazuki Saito, Virender Kumar","doi":"10.1007/s11119-024-10163-8","DOIUrl":null,"url":null,"abstract":"<p>Crop establishment is one of the major rice production operations that strongly affects rice production, productivity, and environmental impacts. This research introduced a new technology and provided scientific evidence for the benefits of mechanized wet direct seeding (mDSR) of rice as compared with the other crop establishment practices commonly applied by farmers for wet direct seeded rice in Mekong River Delta in Vietnam, such as seeding in line using drum-seeder (dDSR) and broadcast seeding (bDSR). The experiment was implemented across two consecutive rice cropping seasons that are Winter-Spring season and Summer-Autumn season in 2020–2021. Treatments included (1–3) mDSR with seeding rates of 30, 50, and 70 kg ha<sup>− 1</sup>, (4) dDSR with 80 kg ha<sup>− 1</sup> seed rate, and (5) bDSR as current farmer practice with seeding rate of 180 kg ha<sup>− 1</sup>. The fertilizer application was adjusted as per seeding rate with 80:40:30 kg ha<sup>− 1</sup> N: P<sub>2</sub>O<sub>5</sub>: K<sub>2</sub>O with lower seed rate 30 and 50 kg ha<sup>− 1</sup> in mDSR; 90:40:30 kg ha<sup>− 1</sup> N: P<sub>2</sub>O<sub>5</sub>: K<sub>2</sub>O with medium seed rate of 70 to 80 kg ha<sup>− 1</sup>; and 115:55:40 kg ha<sup>− 1</sup> N: P<sub>2</sub>O<sub>5</sub>: K<sub>2</sub>O with high seed rate of 180 kg ha<sup>− 1</sup> in bDSR. Mechanized wet direct seeding rice with a lower seed rate of 30 to 70 kg ha<sup>− 1</sup> and fertilizer rate by 22–30% reduced variation in seedling density by 40–80% and in yield by 0.1 to 0.3 t ha<sup>− 1</sup> and had similar yield to bDSR. In consequence, N productivity was 27 and 32% higher in mDSR as compared to bDSR during the Winter-Spring season and Summer-Autumn seasons, respectively. The use of lower seed rate and fertilizer in mDSR also led to higher income and lower carbon footprint (GHGe per kg of paddy grains) of rice production than the currently used practices of bDSR. Net income of mDSR was comparable to that of dDSR and higher by 145–220 and 171–248 $US than that of bDSR in Winter-Spring season and Summer-Autumn, respectively. The carbon footprint of mDSR rice production compared to bDSR was lower by 22–25% and 12–20% during the Winter-Spring and Summer-Autumn seasons, respectively. Given the above benefits of farming efficiency, higher income, and low emission, mDSR would be a technology package that strongly supports sustainable rice cultivation transformation for the Mekong River Delta of Vietnam.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"56 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10163-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Crop establishment is one of the major rice production operations that strongly affects rice production, productivity, and environmental impacts. This research introduced a new technology and provided scientific evidence for the benefits of mechanized wet direct seeding (mDSR) of rice as compared with the other crop establishment practices commonly applied by farmers for wet direct seeded rice in Mekong River Delta in Vietnam, such as seeding in line using drum-seeder (dDSR) and broadcast seeding (bDSR). The experiment was implemented across two consecutive rice cropping seasons that are Winter-Spring season and Summer-Autumn season in 2020–2021. Treatments included (1–3) mDSR with seeding rates of 30, 50, and 70 kg ha− 1, (4) dDSR with 80 kg ha− 1 seed rate, and (5) bDSR as current farmer practice with seeding rate of 180 kg ha− 1. The fertilizer application was adjusted as per seeding rate with 80:40:30 kg ha− 1 N: P2O5: K2O with lower seed rate 30 and 50 kg ha− 1 in mDSR; 90:40:30 kg ha− 1 N: P2O5: K2O with medium seed rate of 70 to 80 kg ha− 1; and 115:55:40 kg ha− 1 N: P2O5: K2O with high seed rate of 180 kg ha− 1 in bDSR. Mechanized wet direct seeding rice with a lower seed rate of 30 to 70 kg ha− 1 and fertilizer rate by 22–30% reduced variation in seedling density by 40–80% and in yield by 0.1 to 0.3 t ha− 1 and had similar yield to bDSR. In consequence, N productivity was 27 and 32% higher in mDSR as compared to bDSR during the Winter-Spring season and Summer-Autumn seasons, respectively. The use of lower seed rate and fertilizer in mDSR also led to higher income and lower carbon footprint (GHGe per kg of paddy grains) of rice production than the currently used practices of bDSR. Net income of mDSR was comparable to that of dDSR and higher by 145–220 and 171–248 $US than that of bDSR in Winter-Spring season and Summer-Autumn, respectively. The carbon footprint of mDSR rice production compared to bDSR was lower by 22–25% and 12–20% during the Winter-Spring and Summer-Autumn seasons, respectively. Given the above benefits of farming efficiency, higher income, and low emission, mDSR would be a technology package that strongly supports sustainable rice cultivation transformation for the Mekong River Delta of Vietnam.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.