Yue Gou, Han Wei Tian, Zheng Xing Wang, Tai Yi Zhang, Shi Sun, Sen Zheng, Tie Jun Cui, Hui Feng Ma
{"title":"Generation of Arbitrarily Programmable Vector Vortex Beams Based on Spin-Independent Metasurface","authors":"Yue Gou, Han Wei Tian, Zheng Xing Wang, Tai Yi Zhang, Shi Sun, Sen Zheng, Tie Jun Cui, Hui Feng Ma","doi":"10.1002/lpor.202400700","DOIUrl":null,"url":null,"abstract":"<p>Vectorial structured beam, which possesses diverse inhomogeneous spatial field distributions, has been developed into an advanced technology for particle trapping, optical communication, and quantum information. However, most of the related studies are based on static devices that can only generate structured light with fixed field distributions. To break through this restriction, the study proposes and experimentally demonstrates a reflection-type spin-independent programmable metasurface (SIPM) that can generate arbitrary vector vortex beams (VVBs) dynamically in microwave frequencies. By controlling the working states of loaded positive-intrinsic-negative (PIN) diodes, the metasurface can realize real-time and spin-independent manipulations of amplitude and phase of the reflected waves. Therefore, any desired VVBs can be achieved by dynamically controlling the superimposition of left- and right-handed reflected circularly polarized vortexes. The proposed SIPM exhibits powerful abilities in modulating the vectorial structured beams in the microwave band, and may bring potential technological innovations for the future spintronics, imaging display, optical computing, and wireless communications.</p>","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"18 11","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202400700","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Vectorial structured beam, which possesses diverse inhomogeneous spatial field distributions, has been developed into an advanced technology for particle trapping, optical communication, and quantum information. However, most of the related studies are based on static devices that can only generate structured light with fixed field distributions. To break through this restriction, the study proposes and experimentally demonstrates a reflection-type spin-independent programmable metasurface (SIPM) that can generate arbitrary vector vortex beams (VVBs) dynamically in microwave frequencies. By controlling the working states of loaded positive-intrinsic-negative (PIN) diodes, the metasurface can realize real-time and spin-independent manipulations of amplitude and phase of the reflected waves. Therefore, any desired VVBs can be achieved by dynamically controlling the superimposition of left- and right-handed reflected circularly polarized vortexes. The proposed SIPM exhibits powerful abilities in modulating the vectorial structured beams in the microwave band, and may bring potential technological innovations for the future spintronics, imaging display, optical computing, and wireless communications.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.