Graph Neural Networks for Pressure Estimation in Water Distribution Systems

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Huy Truong, Andrés Tello, Alexander Lazovik, Victoria Degeler
{"title":"Graph Neural Networks for Pressure Estimation in Water Distribution Systems","authors":"Huy Truong, Andrés Tello, Alexander Lazovik, Victoria Degeler","doi":"10.1029/2023wr036741","DOIUrl":null,"url":null,"abstract":"Pressure and flow estimation in water distribution networks (WDNs) allows water management companies to optimize their control operations. For many years, mathematical simulation tools have been the most common approach to reconstructing an estimate of the WDNs hydraulics. However, pure physics-based simulations involve several challenges, for example, partially observable data, high uncertainty, and extensive manual calibration. Thus, data-driven approaches have gained traction to overcome such limitations. In this work, we combine physics-based modeling and graph neural networks (GNN), a data-driven approach, to address the pressure estimation problem. Our work has two main contributions. First, a training strategy that relies on random sensor placement making our GNN-based estimation model robust to unexpected sensor location changes. Second, a realistic evaluation protocol that considers real temporal patterns and noise injection to mimic the uncertainties intrinsic to real-world scenarios. As a result, a new state-of-the-art model, <b>GAT</b> with <b>Res</b>idual Connections, for pressure estimation is available. Our model surpasses the performance of previous studies on several WDNs benchmarks, showing a reduction of absolute error of ≈40% on average.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036741","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pressure and flow estimation in water distribution networks (WDNs) allows water management companies to optimize their control operations. For many years, mathematical simulation tools have been the most common approach to reconstructing an estimate of the WDNs hydraulics. However, pure physics-based simulations involve several challenges, for example, partially observable data, high uncertainty, and extensive manual calibration. Thus, data-driven approaches have gained traction to overcome such limitations. In this work, we combine physics-based modeling and graph neural networks (GNN), a data-driven approach, to address the pressure estimation problem. Our work has two main contributions. First, a training strategy that relies on random sensor placement making our GNN-based estimation model robust to unexpected sensor location changes. Second, a realistic evaluation protocol that considers real temporal patterns and noise injection to mimic the uncertainties intrinsic to real-world scenarios. As a result, a new state-of-the-art model, GAT with Residual Connections, for pressure estimation is available. Our model surpasses the performance of previous studies on several WDNs benchmarks, showing a reduction of absolute error of ≈40% on average.
用于配水系统压力估算的图神经网络
配水管网(WDN)中的压力和流量估算有助于水管理公司优化其控制操作。多年来,数学模拟工具一直是重建配水管网水力学估算的最常用方法。然而,纯粹的物理模拟存在一些挑战,例如部分可观测数据、高度不确定性和大量手动校准。因此,数据驱动方法在克服这些局限性方面越来越受到重视。在这项工作中,我们将基于物理的建模与图神经网络(GNN)(一种数据驱动方法)相结合,以解决压力估计问题。我们的工作有两大贡献。首先,一种依赖于随机传感器位置的训练策略使我们基于 GNN 的估算模型对意外的传感器位置变化具有鲁棒性。其次,一个现实的评估协议,考虑了真实的时间模式和噪声注入,以模拟真实世界场景中固有的不确定性。因此,一个全新的、最先进的压力估算模型--带有残差连接的 GAT 模型问世了。我们的模型在几个 WDNs 基准上的性能超越了之前的研究,显示绝对误差平均减少了 ≈40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信