Mitigating Errors on Superconducting Quantum Processors Through Fuzzy Clustering

IF 4.4 Q1 OPTICS
Halima G. Ahmad, Roberto Schiattarella, Pasquale Mastrovito, Angela Chiatto, Anna Levochkina, Martina Esposito, Domenico Montemurro, Giovanni P. Pepe, Alessandro Bruno, Francesco Tafuri, Autilia Vitiello, Giovanni Acampora, Davide Massarotti
{"title":"Mitigating Errors on Superconducting Quantum Processors Through Fuzzy Clustering","authors":"Halima G. Ahmad,&nbsp;Roberto Schiattarella,&nbsp;Pasquale Mastrovito,&nbsp;Angela Chiatto,&nbsp;Anna Levochkina,&nbsp;Martina Esposito,&nbsp;Domenico Montemurro,&nbsp;Giovanni P. Pepe,&nbsp;Alessandro Bruno,&nbsp;Francesco Tafuri,&nbsp;Autilia Vitiello,&nbsp;Giovanni Acampora,&nbsp;Davide Massarotti","doi":"10.1002/qute.202300400","DOIUrl":null,"url":null,"abstract":"<p>Quantum utility is severely limited in superconducting quantum hardware until now by the modest number of qubits and the relatively high level of control and readout errors, due to the intentional coupling with the external environment required for manipulation and readout of the qubit states. Practical applications in the Noisy Intermediate Scale Quantum (NISQ) era rely on Quantum Error Mitigation (QEM) techniques, which are able to improve the accuracy of the expectation values of quantum observables by implementing classical post-processing analysis from an ensemble of repeated noisy quantum circuit runs. In this work, a recent QEM technique that uses Fuzzy C-Means (FCM) clustering to specifically identify measurement error patterns is focused. For the first time, a proof-of-principle validation of the technique on a two-qubit register, obtained as a subset of a real NISQ five-qubit superconducting quantum processor based on transmon qubits is reported. It is demonstrated that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates-based quantum circuits, without necessarily invoking state-of-the-art coherence, gate, and readout fidelities.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202300400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum utility is severely limited in superconducting quantum hardware until now by the modest number of qubits and the relatively high level of control and readout errors, due to the intentional coupling with the external environment required for manipulation and readout of the qubit states. Practical applications in the Noisy Intermediate Scale Quantum (NISQ) era rely on Quantum Error Mitigation (QEM) techniques, which are able to improve the accuracy of the expectation values of quantum observables by implementing classical post-processing analysis from an ensemble of repeated noisy quantum circuit runs. In this work, a recent QEM technique that uses Fuzzy C-Means (FCM) clustering to specifically identify measurement error patterns is focused. For the first time, a proof-of-principle validation of the technique on a two-qubit register, obtained as a subset of a real NISQ five-qubit superconducting quantum processor based on transmon qubits is reported. It is demonstrated that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates-based quantum circuits, without necessarily invoking state-of-the-art coherence, gate, and readout fidelities.

通过模糊聚类减少超导量子处理器的误差
迄今为止,超导量子硬件的量子功用受到了量子比特数量有限以及控制和读出误差水平相对较高的严重限制,这是由于量子比特状态的操纵和读出需要与外部环境进行有意耦合。噪声中间量子(NISQ)时代的实际应用依赖于量子误差缓解(QEM)技术,该技术能够通过对重复噪声量子电路运行集合进行经典后处理分析,提高量子观测值期望值的准确性。在这项工作中,重点介绍了一种最新的 QEM 技术,该技术使用模糊 C-Means (FCM)聚类来专门识别测量误差模式。报告首次在一个双量子比特寄存器上对该技术进行了原理验证,该寄存器是基于transmon量子比特的真实NISQ五量子比特超导量子处理器的一个子集。结果表明,基于 FCM 的 QEM 技术可以合理地改进基于单比特和双比特门的量子电路的期望值,而不一定需要调用最先进的相干性、门和读出保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信