{"title":"A two-step Monte Carlo algorithm for interaction between resonant ions and radio frequency waves","authors":"T. Johnson , L.-G. Eriksson","doi":"10.1016/j.fpp.2024.100065","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a new Monte Carlo algorithm intended for use in orbit following Monte Carlo codes (OFMC) to describe resonant interaction of ions with Radio Frequency (RF) waves in axi-symmetric toroidal plasmas. The algorithm is based on a quasi-linear description of the wave–particle interaction and its effect on the distribution function of a resonating ion species. The algorithm outlined in the present paper utilises a two-step approach for the evaluation of the Monte Carlo operator that has better efficiency and a stronger convergence than the standard Euler–Maruyama scheme. The algorithm preserves the reciprocity of the diffusion process. Furthermore, it simplifies how the displacement of the resonance position, as a result of wave–particle interaction, is accounted for. Such displacements can have a noticeable effect on the deterministic part of the Monte Carlo operator. The fundamental nature of guiding centre displacements of resonant ions as a result of wave–particle interaction is reviewed.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"11 ","pages":"Article 100065"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277282852400030X/pdfft?md5=2ceda756529cd47b63c9efe88237f81c&pid=1-s2.0-S277282852400030X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277282852400030X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a new Monte Carlo algorithm intended for use in orbit following Monte Carlo codes (OFMC) to describe resonant interaction of ions with Radio Frequency (RF) waves in axi-symmetric toroidal plasmas. The algorithm is based on a quasi-linear description of the wave–particle interaction and its effect on the distribution function of a resonating ion species. The algorithm outlined in the present paper utilises a two-step approach for the evaluation of the Monte Carlo operator that has better efficiency and a stronger convergence than the standard Euler–Maruyama scheme. The algorithm preserves the reciprocity of the diffusion process. Furthermore, it simplifies how the displacement of the resonance position, as a result of wave–particle interaction, is accounted for. Such displacements can have a noticeable effect on the deterministic part of the Monte Carlo operator. The fundamental nature of guiding centre displacements of resonant ions as a result of wave–particle interaction is reviewed.