Minghui Zhang, Deyuan Zhou, Xia Yang, Xiangtao Sun, Qingzhao Kong
{"title":"Uncertainties quantification for damage localization in concrete based on Bayesian method","authors":"Minghui Zhang, Deyuan Zhou, Xia Yang, Xiangtao Sun, Qingzhao Kong","doi":"10.1016/j.probengmech.2024.103660","DOIUrl":null,"url":null,"abstract":"<div><p>The presence of defects in concrete can diminish load-bearing capacity of structures, giving rise to potential concerns regarding safety and durability. Thus, a method that enhances the sensitivity, resolution and robustness of damage localization is critically necessary to assess the condition of concrete structures. This research presents a damage localization method based on Bayesian probabilistic fusion, and uncertainties from measurement and identification process are considered and quantified. The likelihood function is constructed based on the hyperbola-based damage localization method, and the posterior distributions of unknown parameters are calculated via Bayesian theorem combined with measurement data. Furthermore, a meso-level finite element model is established, wherein the concrete medium is considered as a three-phase composite material consisting of polygonal aggregates, mortar matrix and interface transition zones. Owing to the meso-level modeling, the propagation behavior of stress waves within concrete and complicated interactions between stress waves and concrete internal structures can be better characterized. Finally, the damage information, time-difference-of arrival, is extracted from the response signals and the efficiency of the proposed method is verified numerically. The numerical results demonstrate that the proposed probabilistic fusion method outperforms the conventional hyperbola-based method in terms of achieving high spatial resolution and resilience in damage localization.</p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"77 ","pages":"Article 103660"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024000821","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of defects in concrete can diminish load-bearing capacity of structures, giving rise to potential concerns regarding safety and durability. Thus, a method that enhances the sensitivity, resolution and robustness of damage localization is critically necessary to assess the condition of concrete structures. This research presents a damage localization method based on Bayesian probabilistic fusion, and uncertainties from measurement and identification process are considered and quantified. The likelihood function is constructed based on the hyperbola-based damage localization method, and the posterior distributions of unknown parameters are calculated via Bayesian theorem combined with measurement data. Furthermore, a meso-level finite element model is established, wherein the concrete medium is considered as a three-phase composite material consisting of polygonal aggregates, mortar matrix and interface transition zones. Owing to the meso-level modeling, the propagation behavior of stress waves within concrete and complicated interactions between stress waves and concrete internal structures can be better characterized. Finally, the damage information, time-difference-of arrival, is extracted from the response signals and the efficiency of the proposed method is verified numerically. The numerical results demonstrate that the proposed probabilistic fusion method outperforms the conventional hyperbola-based method in terms of achieving high spatial resolution and resilience in damage localization.
期刊介绍:
This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.