Non-central sections of the l1-ball

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Hermann König
{"title":"Non-central sections of the l1-ball","authors":"Hermann König","doi":"10.1016/j.aam.2024.102737","DOIUrl":null,"url":null,"abstract":"<div><p>We determine the maximal non-central hyperplane sections of the <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>-ball if the fixed distance of the hyperplane to the origin is between <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></mfrac></math></span>. This adds to a result of Liu and Tkocz who considered the distance range between <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></mfrac></math></span> and 1. For <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, the maximal sections are parallel to the <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-dimensional coordinate planes. We also study non-central sections of the complex <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>-ball, where the formulas are more complicated than in the real case. Also, the extrema are partially different compared to the real case.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196885824000691/pdfft?md5=4ac52765c27da32cc7db516354fb66e2&pid=1-s2.0-S0196885824000691-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000691","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We determine the maximal non-central hyperplane sections of the l1n-ball if the fixed distance of the hyperplane to the origin is between 13 and 12. This adds to a result of Liu and Tkocz who considered the distance range between 12 and 1. For n4, the maximal sections are parallel to the (n1)-dimensional coordinate planes. We also study non-central sections of the complex l2-ball, where the formulas are more complicated than in the real case. Also, the extrema are partially different compared to the real case.

l1 球的非中心部分
如果超平面到原点的固定距离在 13 和 12 之间,我们将确定 l1n 球的最大非中心超平面截面。对于 n≥4,最大截面平行于 (n-1) 维坐标平面。我们还研究了复数 l∞2 球的非中心截面,其公式比实数情况更复杂。此外,极值与实数情况也有部分不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信