Spin-spin correlators on the β/β⋆ boundaries in 2D Ising-like models: Exact analysis through theory of block Toeplitz determinants

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Yizhuang Liu
{"title":"Spin-spin correlators on the β/β⋆ boundaries in 2D Ising-like models: Exact analysis through theory of block Toeplitz determinants","authors":"Yizhuang Liu","doi":"10.1016/j.nuclphysb.2024.116614","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we investigate quantitative properties of correlation functions on the boundaries between two 2D Ising-like models with dual parameters <em>β</em> and <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>⋆</mo></mrow></msup></math></span>. Spin-spin correlators in such constructions without reflection symmetry with respect to translation-invariant directions are usually represented as <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> block Toeplitz determinants which are usually significantly harder than the scalar (<span><math><mn>1</mn><mo>×</mo><mn>1</mn></math></span> block) versions. Nevertheless, we show that for the specific <span><math><mi>β</mi><mo>/</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⋆</mo></mrow></msup></math></span> boundaries considered in this work, the symbol matrices allow explicit commutative Wiener-Hopf factorizations. As a result, the constants <span><math><mi>E</mi><mo>(</mo><mi>a</mi><mo>)</mo></math></span> and <span><math><mi>E</mi><mo>(</mo><mover><mrow><mi>a</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> for the large <em>n</em> asymptotics still allow explicit representations that generalize the strong Szegö's theorem for scalar symbols. However, the Wiener-Hopf factors at different <em>z</em> do not commute. We will show that due to this non-commutativity, “logarithmic divergences” in the Wiener-Hopf factors generate certain “anomalous terms” in the exponential form factor expansions of the re-scaled correlators. Since our boundaries in the naive scaling limits can be formulated as certain integrable boundaries/defects in 2D massive QFTs, the results of this work facilitate detailed comparisons with bootstrap approaches.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324001809/pdfft?md5=00dd52b8b714507805c2a550d4cf6441&pid=1-s2.0-S0550321324001809-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324001809","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate quantitative properties of correlation functions on the boundaries between two 2D Ising-like models with dual parameters β and β. Spin-spin correlators in such constructions without reflection symmetry with respect to translation-invariant directions are usually represented as 2×2 block Toeplitz determinants which are usually significantly harder than the scalar (1×1 block) versions. Nevertheless, we show that for the specific β/β boundaries considered in this work, the symbol matrices allow explicit commutative Wiener-Hopf factorizations. As a result, the constants E(a) and E(a˜) for the large n asymptotics still allow explicit representations that generalize the strong Szegö's theorem for scalar symbols. However, the Wiener-Hopf factors at different z do not commute. We will show that due to this non-commutativity, “logarithmic divergences” in the Wiener-Hopf factors generate certain “anomalous terms” in the exponential form factor expansions of the re-scaled correlators. Since our boundaries in the naive scaling limits can be formulated as certain integrable boundaries/defects in 2D massive QFTs, the results of this work facilitate detailed comparisons with bootstrap approaches.

二维类伊辛模型中β/β⋆边界上的自旋-自旋相关子:通过块托普利兹行列式理论进行精确分析
在这项工作中,我们研究了具有对偶参数 β 和 β⋆ 的两个二维类伊辛模型之间边界上相关函数的定量性质。在这种没有关于平移不变方向的反射对称性的构造中,自旋-自旋相关因子通常用 2×2 块托普利兹行列式表示,这通常比标量(1×1 块)版本要难得多。然而,我们证明,对于本研究中考虑的特定 β/β⋆ 边界,符号矩阵允许明确的交换维纳-霍普夫因式分解。因此,大 n 渐近线的常数 E(a) 和 E(a˜) 仍然允许明确表示,从而概括了标量符号的强塞戈定理。然而,不同 z 处的维纳-霍普夫因子并不换算。我们将证明,由于这种非交换性,Wiener-Hopf 因子中的 "对数发散 "会在重新缩放的相关因子的指数形式因子展开中产生某些 "反常项"。由于我们在天真的缩放极限中的边界可以表述为二维大质量 QFT 中的某些可积分边界/缺陷,这项工作的结果有助于与自举法进行详细比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信