Pia Brinkmann , Jana V.P. Devos , Jelle H.M. van der Eerden , Jasper V. Smit , Marcus L.F. Janssen , Sonja A. Kotz , Michael Schwartze
{"title":"Parallel EEG assessment of different sound predictability levels in tinnitus","authors":"Pia Brinkmann , Jana V.P. Devos , Jelle H.M. van der Eerden , Jasper V. Smit , Marcus L.F. Janssen , Sonja A. Kotz , Michael Schwartze","doi":"10.1016/j.heares.2024.109073","DOIUrl":null,"url":null,"abstract":"<div><p>Tinnitus denotes the perception of a non-environmental sound and might result from aberrant auditory prediction. Successful prediction of formal (e.g., type) and temporal sound characteristics facilitates the filtering of irrelevant information, also labelled as ‘sensory gating’ (SG). Here, we explored if and how parallel manipulations of formal prediction violations and temporal predictability affect SG in persons with and without tinnitus. Age-, education- and sex-matched persons with and without tinnitus (<em>N</em> = 52) participated and listened to paired-tone oddball sequences, varying in formal (standard vs. deviant pitch) and temporal predictability (isochronous vs. random timing). EEG was recorded from 128 channels and data were analyzed by means of temporal spatial principal component analysis (tsPCA). SG was assessed by amplitude suppression for the 2nd tone in a pair and was observed in P50-like activity in both timing conditions and groups. Correspondingly, deviants elicited overall larger amplitudes than standards. However, only persons without tinnitus displayed a larger N100-like deviance response in the isochronous compared to the random timing condition. This result might imply that persons with tinnitus do not benefit similarly as persons without tinnitus from temporal predictability in deviance processing. Thus, persons with tinnitus might display less temporal sensitivity in auditory processing than persons without tinnitus.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"450 ","pages":"Article 109073"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378595524001266/pdfft?md5=b3f978167e26f37c57eb2438f60fe330&pid=1-s2.0-S0378595524001266-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595524001266","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tinnitus denotes the perception of a non-environmental sound and might result from aberrant auditory prediction. Successful prediction of formal (e.g., type) and temporal sound characteristics facilitates the filtering of irrelevant information, also labelled as ‘sensory gating’ (SG). Here, we explored if and how parallel manipulations of formal prediction violations and temporal predictability affect SG in persons with and without tinnitus. Age-, education- and sex-matched persons with and without tinnitus (N = 52) participated and listened to paired-tone oddball sequences, varying in formal (standard vs. deviant pitch) and temporal predictability (isochronous vs. random timing). EEG was recorded from 128 channels and data were analyzed by means of temporal spatial principal component analysis (tsPCA). SG was assessed by amplitude suppression for the 2nd tone in a pair and was observed in P50-like activity in both timing conditions and groups. Correspondingly, deviants elicited overall larger amplitudes than standards. However, only persons without tinnitus displayed a larger N100-like deviance response in the isochronous compared to the random timing condition. This result might imply that persons with tinnitus do not benefit similarly as persons without tinnitus from temporal predictability in deviance processing. Thus, persons with tinnitus might display less temporal sensitivity in auditory processing than persons without tinnitus.
期刊介绍:
The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles.
Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.