Machine learning progressive CKD risk prediction model is associated with CKD-mineral bone disorder

IF 2.1 Q3 ENDOCRINOLOGY & METABOLISM
Joseph Aoki, Omar Khalid, Cihan Kaya, Tarush Kothari, Mark Silberman, Con Skordis, Jonathan Hughes, Jerry Hussong, Mohamed E. Salama
{"title":"Machine learning progressive CKD risk prediction model is associated with CKD-mineral bone disorder","authors":"Joseph Aoki,&nbsp;Omar Khalid,&nbsp;Cihan Kaya,&nbsp;Tarush Kothari,&nbsp;Mark Silberman,&nbsp;Con Skordis,&nbsp;Jonathan Hughes,&nbsp;Jerry Hussong,&nbsp;Mohamed E. Salama","doi":"10.1016/j.bonr.2024.101787","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Recently, we developed the machine learning (ML)-based Progressive CKD Risk Classifier (PCRC), which accurately predicts CKD progression within 5 years. While its performance is robust, it is unknown whether PCRC categorization is associated with CKD-mineral bone disorder (CKD-MBD), a critical, yet under-recognized, downstream consequence. Therefore, we aimed to 1) survey real-world testing utilization data for CKD-MBD and 2) evaluate ML-based PCRC categorization with CKD-MBD.</p></div><div><h3>Methods</h3><p>The cohort study utilized deidentified data from a US laboratory outpatient network, composed of 330,238 outpatients, over 5 years. The main outcomes were: 1) Laboratory testing utilization of eGFR, urine albumin creatinine ratio (UACR), parathyroid hormone (PTH), calcium, phosphate; and 2) PCRC categorization and biochemical abnormalities associated with CKD-MBD over 5 years.</p></div><div><h3>Results</h3><p>We identified significant under-utilization of laboratory testing for UACR, phosphate and PTH, which ranged from −40 % to −100 % against the minimum standard-of-care. At five years, the CKD progression group, as predicted by the PCRC, was associated with 15.5 % increase in phosphate (<em>P</em> value &lt;&lt;0.01) and 94.9 % increase in PTH (P value &lt;&lt;0.01), consistent with CKD-MBD.</p></div><div><h3>Conclusions</h3><p>We identified significant under-utilization of laboratory testing for CKD-MBD. Moreover, we demonstrated that CKD progression, as predicted by the PCRC, is associated with CKD-MBD, several years in advance of disease. To our knowledge, this investigation is the first to examine the role of predictive analytics for CKD progression on mineral bone disorder. While further studies are required, these findings have the potential to advance AI/ML-based risk stratification and treatment of CKD and CKD-MBD.</p></div>","PeriodicalId":9043,"journal":{"name":"Bone Reports","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352187224000548/pdfft?md5=20cfeb812db521b791af9be7514b3fb6&pid=1-s2.0-S2352187224000548-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352187224000548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Recently, we developed the machine learning (ML)-based Progressive CKD Risk Classifier (PCRC), which accurately predicts CKD progression within 5 years. While its performance is robust, it is unknown whether PCRC categorization is associated with CKD-mineral bone disorder (CKD-MBD), a critical, yet under-recognized, downstream consequence. Therefore, we aimed to 1) survey real-world testing utilization data for CKD-MBD and 2) evaluate ML-based PCRC categorization with CKD-MBD.

Methods

The cohort study utilized deidentified data from a US laboratory outpatient network, composed of 330,238 outpatients, over 5 years. The main outcomes were: 1) Laboratory testing utilization of eGFR, urine albumin creatinine ratio (UACR), parathyroid hormone (PTH), calcium, phosphate; and 2) PCRC categorization and biochemical abnormalities associated with CKD-MBD over 5 years.

Results

We identified significant under-utilization of laboratory testing for UACR, phosphate and PTH, which ranged from −40 % to −100 % against the minimum standard-of-care. At five years, the CKD progression group, as predicted by the PCRC, was associated with 15.5 % increase in phosphate (P value <<0.01) and 94.9 % increase in PTH (P value <<0.01), consistent with CKD-MBD.

Conclusions

We identified significant under-utilization of laboratory testing for CKD-MBD. Moreover, we demonstrated that CKD progression, as predicted by the PCRC, is associated with CKD-MBD, several years in advance of disease. To our knowledge, this investigation is the first to examine the role of predictive analytics for CKD progression on mineral bone disorder. While further studies are required, these findings have the potential to advance AI/ML-based risk stratification and treatment of CKD and CKD-MBD.

Abstract Image

机器学习渐进式 CKD 风险预测模型与 CKD-矿物质骨骼紊乱有关
背景最近,我们开发了基于机器学习(ML)的进展性 CKD 风险分类器(PCRC),它能准确预测 5 年内 CKD 的进展情况。虽然 PCRC 的性能很稳定,但 PCRC 的分类是否与 CKD-矿物质骨紊乱(CKD-MBD)有关还不得而知,而 CKD-矿物质骨紊乱是一个重要的下游后果,但却未得到充分认识。因此,我们的目标是:1)调查真实世界中 CKD-MBD 的检测使用数据;2)评估基于 ML 的 PCRC 分类与 CKD-MBD 的关系。主要结果如下1) eGFR、尿白蛋白肌酐比值 (UACR)、甲状旁腺激素 (PTH)、钙、磷酸盐的实验室检测利用率;以及 2) PCRC 分类和 5 年内与 CKD-MBD 相关的生化异常。五年后,根据 PCRC 预测,CKD 进展组的磷酸盐增加了 15.5%(P 值为 0.01),PTH 增加了 94.9%(P 值为 0.01),与 CKD-MBD 相一致。此外,我们还证明,PCRC 预测的 CKD 进展与 CKD-MBD 相关,而且比 CKD-MBD 提前数年。据我们所知,这项调查是首次研究 CKD 进展预测分析对矿物质骨紊乱的作用。虽然还需要进一步研究,但这些发现有可能推动基于人工智能/ML 的 CKD 和 CKD-MBD 风险分层和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bone Reports
Bone Reports Medicine-Orthopedics and Sports Medicine
CiteScore
4.30
自引率
4.00%
发文量
444
审稿时长
57 days
期刊介绍: Bone Reports is an interdisciplinary forum for the rapid publication of Original Research Articles and Case Reports across basic, translational and clinical aspects of bone and mineral metabolism. The journal publishes papers that are scientifically sound, with the peer review process focused principally on verifying sound methodologies, and correct data analysis and interpretation. We welcome studies either replicating or failing to replicate a previous study, and null findings. We fulfil a critical and current need to enhance research by publishing reproducibility studies and null findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信