Predicting hardness of graphene-added Si3N4 using machine learning: A data-driven approach

IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS
Awais Qadir , Shoaib Ali , Jan Dusza , David Rafaja
{"title":"Predicting hardness of graphene-added Si3N4 using machine learning: A data-driven approach","authors":"Awais Qadir ,&nbsp;Shoaib Ali ,&nbsp;Jan Dusza ,&nbsp;David Rafaja","doi":"10.1016/j.oceram.2024.100634","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a data-driven framework based on machine learning (ML) using extreme gradient boosting (XGBoost) for predicting the hardness of silicon nitride (Si<sub>3</sub>N<sub>4</sub>) ceramics reinforced with graphene. The XGBoost model takes into account various factors such as graphene type and content, characteristics of the raw Si<sub>3</sub>N<sub>4</sub> powder, the parameters of the sintering process (sintering technique, temperature, pressure, holding time), and the characteristics of the sintered samples, i.e., the density, <span><math><mrow><mfrac><mi>α</mi><mi>β</mi></mfrac></mrow></math></span> content and Vickers hardness. The parameters that influence the Si<sub>3</sub>N<sub>4</sub> hardness most strongly are identified, with sintering pressure, sintering time and density being the most influential. The addition of graphene content up to a certain threshold (1 wt%) has a positive impact on hardness. However, beyond that it leads to a lower density and a lower mechanical performance. Sintering parameters, particularly the sintering pressure, temperature, holding time and technique, strongly affect the density, final grain size, <span><math><mrow><mfrac><mi>α</mi><mi>β</mi></mfrac></mrow></math></span> Si<sub>3</sub>N<sub>4</sub> composition and subsequently the hardness. The study highlights the importance of density and the densification process in achieving high hardness in Si<sub>3</sub>N<sub>4</sub> ceramics. The developed ML model provides a valuable tool for predicting the hardness of Si<sub>3</sub>N<sub>4</sub>+graphene ceramics composites and offers insights into selecting suitable graphene type, content, and processing parameters. While the study primarily focuses on Si<sub>3</sub>N<sub>4</sub>+graphene composites, this novel approach holds promise for the <em>in-silico</em> design and analysis of diverse ceramic materials.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"19 ","pages":"Article 100634"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524000981/pdfft?md5=9e185e76da149e516359f8ad1226922d&pid=1-s2.0-S2666539524000981-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524000981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a data-driven framework based on machine learning (ML) using extreme gradient boosting (XGBoost) for predicting the hardness of silicon nitride (Si3N4) ceramics reinforced with graphene. The XGBoost model takes into account various factors such as graphene type and content, characteristics of the raw Si3N4 powder, the parameters of the sintering process (sintering technique, temperature, pressure, holding time), and the characteristics of the sintered samples, i.e., the density, αβ content and Vickers hardness. The parameters that influence the Si3N4 hardness most strongly are identified, with sintering pressure, sintering time and density being the most influential. The addition of graphene content up to a certain threshold (1 wt%) has a positive impact on hardness. However, beyond that it leads to a lower density and a lower mechanical performance. Sintering parameters, particularly the sintering pressure, temperature, holding time and technique, strongly affect the density, final grain size, αβ Si3N4 composition and subsequently the hardness. The study highlights the importance of density and the densification process in achieving high hardness in Si3N4 ceramics. The developed ML model provides a valuable tool for predicting the hardness of Si3N4+graphene ceramics composites and offers insights into selecting suitable graphene type, content, and processing parameters. While the study primarily focuses on Si3N4+graphene composites, this novel approach holds promise for the in-silico design and analysis of diverse ceramic materials.

Abstract Image

利用机器学习预测添加石墨烯的 Si3N4 的硬度:数据驱动法
本研究提出了一种基于机器学习(ML)的数据驱动框架,使用极端梯度提升(XGBoost)技术预测使用石墨烯增强的氮化硅(Si3N4)陶瓷的硬度。XGBoost 模型考虑了各种因素,如石墨烯的类型和含量、Si3N4 原粉的特性、烧结工艺参数(烧结技术、温度、压力、保温时间)以及烧结样品的特性,即密度、αβ 含量和维氏硬度。确定了对 Si3N4 硬度影响最大的参数,其中影响最大的是烧结压力、烧结时间和密度。石墨烯含量达到一定临界值(1 wt%)会对硬度产生积极影响。然而,超过这一限度后,密度会降低,机械性能也会降低。烧结参数,尤其是烧结压力、温度、保温时间和技术,对密度、最终晶粒大小、αβ Si3N4 成分以及随后的硬度都有很大影响。这项研究强调了密度和致密化过程对实现 Si3N4 陶瓷高硬度的重要性。所开发的 ML 模型为预测 Si3N4+ 石墨烯陶瓷复合材料的硬度提供了有价值的工具,并为选择合适的石墨烯类型、含量和加工参数提供了见解。虽然这项研究主要侧重于 Si3N4+ 石墨烯复合材料,但这种新方法有望用于各种陶瓷材料的硅内设计和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Ceramics
Open Ceramics Materials Science-Materials Chemistry
CiteScore
4.20
自引率
0.00%
发文量
102
审稿时长
67 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信