Exact dynamic stiffness formulations and vibration response analysis of orthotropic viscoelastic plate built-up structures

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xiao Liu , Xiang Liu , Sondipon Adhikari
{"title":"Exact dynamic stiffness formulations and vibration response analysis of orthotropic viscoelastic plate built-up structures","authors":"Xiao Liu ,&nbsp;Xiang Liu ,&nbsp;Sondipon Adhikari","doi":"10.1016/j.compstruc.2024.107455","DOIUrl":null,"url":null,"abstract":"<div><p>The analytical damped dynamic stiffness formulation is developed for the dynamic response analysis of orthotropic viscoelastic plate built-up structures with a general frequency-dependent damping model. The governing differential equation in the frequency domain is established, which allows for the direct introduction of frequency-dependent damping models by considering internal (material) and external (environmental) damping. The adopted viscoelastic damping model is sufficiently general to describe various types of damping, including viscous or non-viscous, integer or fractional order models. Then, the exact damped dynamic stiffness formulations for both in-plane and out-of-plane vibrations of plate elements are developed. Arbitrarily distributed excitations can be applied to the plate nodal boundaries based on the analytical Fourier-type forward and inverse transforms. The dynamic response analysis of the viscoelastic plate is carried out, which verifies the accuracy and efficiency of this method within the broadband frequency range. The numerical results serve as a valuable reference and can be used as benchmark solutions. Accurate and profound comprehension of the dynamical behavior of viscoelastic plates is a key task in designing these structures, and also optimizing their vibrational behavior. This method offers a powerful tool for representing the broadband dynamics of viscoelastic plate structures, utilizing very few degrees of freedom.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924001846","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The analytical damped dynamic stiffness formulation is developed for the dynamic response analysis of orthotropic viscoelastic plate built-up structures with a general frequency-dependent damping model. The governing differential equation in the frequency domain is established, which allows for the direct introduction of frequency-dependent damping models by considering internal (material) and external (environmental) damping. The adopted viscoelastic damping model is sufficiently general to describe various types of damping, including viscous or non-viscous, integer or fractional order models. Then, the exact damped dynamic stiffness formulations for both in-plane and out-of-plane vibrations of plate elements are developed. Arbitrarily distributed excitations can be applied to the plate nodal boundaries based on the analytical Fourier-type forward and inverse transforms. The dynamic response analysis of the viscoelastic plate is carried out, which verifies the accuracy and efficiency of this method within the broadband frequency range. The numerical results serve as a valuable reference and can be used as benchmark solutions. Accurate and profound comprehension of the dynamical behavior of viscoelastic plates is a key task in designing these structures, and also optimizing their vibrational behavior. This method offers a powerful tool for representing the broadband dynamics of viscoelastic plate structures, utilizing very few degrees of freedom.

正交粘弹性板结构的精确动态刚度计算和振动响应分析
针对具有一般频率相关阻尼模型的正交粘弹性板结构的动态响应分析,开发了阻尼动态刚度解析公式。建立了频域中的调控微分方程,通过考虑内部(材料)和外部(环境)阻尼,可直接引入频率相关阻尼模型。所采用的粘弹性阻尼模型具有足够的通用性,可以描述各种类型的阻尼,包括粘性或非粘性、整阶或分数阶模型。然后,针对板元素的平面内和平面外振动,建立了精确的阻尼动态刚度公式。基于分析傅里叶式正反变换,可对板节点边界施加任意分布的激励。对粘弹性板进行了动态响应分析,验证了该方法在宽带频率范围内的准确性和效率。数值结果具有重要的参考价值,可用作基准解。准确而深刻地理解粘弹性板的动力学行为是设计这些结构以及优化其振动行为的关键任务。该方法利用极少的自由度,为表示粘弹性板结构的宽带动力学提供了强有力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信