Masashi Bando , Hirofumi Chiba , Yasunari Miyazaki , Takafumi Suda
{"title":"Current challenges in the diagnosis and management of idiopathic pulmonary fibrosis in Japan","authors":"Masashi Bando , Hirofumi Chiba , Yasunari Miyazaki , Takafumi Suda","doi":"10.1016/j.resinv.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>Idiopathic pulmonary fibrosis (IPF) is the archetypal interstitial lung disease. It is a chronic progressive condition that is challenging to manage as the clinical course of the disease is often difficult to predict. The prevalence of IPF is rising globally and in Japan, where it is estimated to affect 27 individuals per 100,000 of the population. Greater patient numbers and the poor prognosis associated with IPF diagnosis mean that there is a growing need for disease management approaches that can slow or even reverse disease progression and improve survival. Considerable progress has been made in recent years, with the approval of two antifibrotic therapies for IPF (pirfenidone and nintedanib), the availability of Japanese treatment guidelines, and the creation of global and Japanese disease registries. Despite this, significant unmet needs remain with respect to the diagnosis, treatment, and management of this complex disease. Each of these challenges will be discussed in this review, including making a timely and differential diagnosis of IPF, uptake and adherence to antifibrotic therapy, patient access to pulmonary rehabilitation, lung transplantation and palliative care, and optimal strategies for monitoring and staging disease progression, with a particular focus on the status in Japan. In addition, the review will reflect upon how ongoing research, clinical trials of novel therapies, and technologic advancements (including artificial intelligence, biomarkers, and genomic classification) may help address these challenges in the future.</p></div>","PeriodicalId":20934,"journal":{"name":"Respiratory investigation","volume":"62 5","pages":"Pages 785-793"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory investigation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212534524000984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Idiopathic pulmonary fibrosis (IPF) is the archetypal interstitial lung disease. It is a chronic progressive condition that is challenging to manage as the clinical course of the disease is often difficult to predict. The prevalence of IPF is rising globally and in Japan, where it is estimated to affect 27 individuals per 100,000 of the population. Greater patient numbers and the poor prognosis associated with IPF diagnosis mean that there is a growing need for disease management approaches that can slow or even reverse disease progression and improve survival. Considerable progress has been made in recent years, with the approval of two antifibrotic therapies for IPF (pirfenidone and nintedanib), the availability of Japanese treatment guidelines, and the creation of global and Japanese disease registries. Despite this, significant unmet needs remain with respect to the diagnosis, treatment, and management of this complex disease. Each of these challenges will be discussed in this review, including making a timely and differential diagnosis of IPF, uptake and adherence to antifibrotic therapy, patient access to pulmonary rehabilitation, lung transplantation and palliative care, and optimal strategies for monitoring and staging disease progression, with a particular focus on the status in Japan. In addition, the review will reflect upon how ongoing research, clinical trials of novel therapies, and technologic advancements (including artificial intelligence, biomarkers, and genomic classification) may help address these challenges in the future.