Mingwei Gang , Satoshi Nonaka , Keisuke Utashiro , Jun-ichi Kodama , Dai Nakamura , Yoshiaki Fujii , Daisuke Fukuda , Shuren Wang
{"title":"Impacts of frost heave susceptibility and temperature-changing conditions on freeze-thaw deterioration of welded tuffs","authors":"Mingwei Gang , Satoshi Nonaka , Keisuke Utashiro , Jun-ichi Kodama , Dai Nakamura , Yoshiaki Fujii , Daisuke Fukuda , Shuren Wang","doi":"10.1016/j.coldregions.2024.104270","DOIUrl":null,"url":null,"abstract":"<div><p>Damage development in rocks by freeze-thaw cycles, a phenomenon that is typical to cold regions, is known to reduce the strength and durability of structures. In this study, a series of freeze-thaw tests were performed on frost and non-frost heave rocks to examine the impact of frost heave susceptibility and temperature-changing conditions on rock behaviors. The freeze-thaw life and uniaxial compressive strength (UCS) of rocks subjected to freeze-thaw cycles were estimated using a model that was based on fatigue damage mechanisms. Furthermore, we proposed a method for estimating the freeze-thaw life of rocks, using expansive strain as an important factor. The results indicated that the Shikotsu welded tuff (a non-frost heave rock) exhibited higher durability than the Noboribetsu welded tuff (a frost heave rock); this may be because the Shikotsu welded tuff had a larger pore radius and more unsaturated pores. The one-dimensional (1D) cooling-heating conditions induced significantly less damage than the three-dimensional (3D) conditions, owing to the continuous migration of free water into the unfrozen zone. The damage model estimated that for the Noboribetsu welded tuff, the freeze-thaw life in the 1D conditions was approximately eight times longer than that in the 3D conditions. Notably, with respect to the Shikotsu welded tuff, a critical freeze-thaw period induced significant expansion, resulting in damage development in the tuff. The freeze-thaw life of each rock sample was estimated based on the magnitude of the volumetric expansive strain. This study contributes to the rational assessment of the stability and durability of rock structures in cold regions.</p></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"225 ","pages":"Article 104270"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24001514","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Damage development in rocks by freeze-thaw cycles, a phenomenon that is typical to cold regions, is known to reduce the strength and durability of structures. In this study, a series of freeze-thaw tests were performed on frost and non-frost heave rocks to examine the impact of frost heave susceptibility and temperature-changing conditions on rock behaviors. The freeze-thaw life and uniaxial compressive strength (UCS) of rocks subjected to freeze-thaw cycles were estimated using a model that was based on fatigue damage mechanisms. Furthermore, we proposed a method for estimating the freeze-thaw life of rocks, using expansive strain as an important factor. The results indicated that the Shikotsu welded tuff (a non-frost heave rock) exhibited higher durability than the Noboribetsu welded tuff (a frost heave rock); this may be because the Shikotsu welded tuff had a larger pore radius and more unsaturated pores. The one-dimensional (1D) cooling-heating conditions induced significantly less damage than the three-dimensional (3D) conditions, owing to the continuous migration of free water into the unfrozen zone. The damage model estimated that for the Noboribetsu welded tuff, the freeze-thaw life in the 1D conditions was approximately eight times longer than that in the 3D conditions. Notably, with respect to the Shikotsu welded tuff, a critical freeze-thaw period induced significant expansion, resulting in damage development in the tuff. The freeze-thaw life of each rock sample was estimated based on the magnitude of the volumetric expansive strain. This study contributes to the rational assessment of the stability and durability of rock structures in cold regions.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.